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Noise-enhanced nonlinear response and the role of modular structure for signal
detection in neuronal networks
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We show that sensory noise can enhance the nonlinear response of neuronal networks, and when delivered
together with a weak signal, it improves the signal detection by the network. We reveal this phenomenon
in neuronal networks that are in a dynamical state preceding a saddle-node bifurcation corresponding to the
appearance of sustained network oscillations. In this state, even a weak subthreshold pulse can evoke a large-
amplitude oscillation of neuronal activity. The signal-to-noise ratio reaches a maximum at an optimum level
of sensory noise, manifesting stochastic resonance (SR) at the population level. We demonstrate SR by use of
simulations and numerical integration of rate equations in a cortical model. Using this model, we mimic the
experiments of Gluckman et al. [Phys. Rev. Lett. 77, 4098 (1996)] that have given evidence of SR in mammalian
brain. We also study neuronal networks in which neurons are grouped in modules and every module works in
the regime of SR. We find that even a few modules can strongly enhance the reliability of signal detection in
comparison with the case when a modular organization is absent.
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I. INTRODUCTION

Noise is ubiquitous in sensory systems and strongly affects
their function [1,2]. Many investigations have been devoted
to the problem of how sensory systems compensate, counter,
or account for noise in order to detect and process sensory
information. Stochastic resonance (SR) is recognized as a
possible mechanism that allows sensory systems to use noise
for their own benefit [1–3]. This phenomenon manifests itself
in an amplification and an optimization of weak signals by
noise [4]. In the brain, SR was observed in sensory systems
[5–8], in central neurons such as hippocampal CA1 neurons
in rat cortex [9–11], in the human blood pressure regulatory
system [12], and the human brain’s visual processing area [13].
SR is also considered as a mechanism mediating neuronal
synchronization within and between functionally relevant
brain areas [14–16]. At the present time, understanding the
role of SR in brain functioning remains elusive.

Most of the theoretical works on SR, including the seminal
paper [17], and experimental realizations of SR refer to
systems based on the motion of a particle subjected to a weak
periodic signal in a bistable potential [4]. Another mechanism
of SR was revealed in a class of dynamical systems based on
excitable dynamics [18,19]. A key ingredient of these systems
is that if the system is kicked by a stimulus from its “rest
state” above an activation threshold, then it returns to the state
deterministically, within a certain refractory time [18–20].
Based on these ideas, several single neuron models have been
proposed to explain SR observed in the brain [6,10,11,19,21].

SR was also observed at the level of an entire sensory
system, i.e., as a collective phenomenon. Gluckman et al.
[9] revealed a resonance in the response of a neuronal
network from mammalian brain on a weak periodic electric
stimulus with a certain magnitude of the stochastic component.
Since no manifestation of SR at the single cell level was
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clearly seen in these experiments, one can assume that the
observed SR has another nature. Until now, no theoretical
explanation of these experiments was proposed. There are
some studies of SR in arrays of neurons [22,23] and summing
networks [24], but they did not study the role of interactions
between neurons. Pacemaker-driven SR [25,26] was observed
in complex networks of interacting excitable units modeled by
Rulkov’s discrete map. Also, evidences for SR were found in
simulations of small networks of interacting Hodgkin-Huxley
neurons [27,28] and in hippocampal CA3-CA1 networks
[29]. Actually, small networks (at most 300 neurons in these
papers) do not allow one to study collective phenomena due to
finite-size effects that manifest themselves in strong irregular
fluctuations destroying synchronized activity of neurons. Their
impact on critical fluctuations of neuronal activity was recently
analyzed in [30]. The breaking of collective phenomena by
finite-size effects is a well-known phenomenon in physical
systems [31,32], but these effects are still poorly understood
in the dynamics of neuronal networks.

In this paper, we propose a mechanism of SR that is based
on excitable dynamics of neuronal networks and caused by
interaction between neurons rather than excitable dynamics
of single neurons. Using simulations of a cortical model of
large neuronal networks with stochastic neurons [30,33] and
numerical integration of dynamical equations, we show that
even weak subthreshold (periodic or pulsed) sensory signals
can generate correlated activity of a large fraction of neurons in
the presence of sensory noise. The signal-to-noise ratio reaches
a maximum at an optimum level of sensory noise, manifesting
stochastic resonance at the population level. We mimic the
experiments of Gluckman et al. [9] and we find qualitative
agreement with the data. Moreover, we discuss the role of
modular organization in the detection of weak signals. For
this purpose, we study networks where neurons are grouped
in modules and every module works in the regime of SR.
We demonstrate that, in this case, the reliability of signal
detection is strongly enhanced in comparison with the case
when modular organization is absent. We show that when
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the size of modules decreases, finite-size effects manifest
themselves in an increase of activity fluctuations that destroy
collective synchronized activity of neurons in the modules.

II. CORTICAL MODEL

In this section, we describe the cortical model, which we use
to study SR in neuronal networks. The model was introduced
in [33] and generalized to the case of shot noise in [30]. A
similar model was proposed in [34,35] (differences between
these models have been discussed in [30]).

A. Structure and rules of stochastic dynamics

We consider neuronal networks composed of stochastic
excitatory and inhibitory neurons. The total number of neurons
is N , the fraction of excitatory neurons is ge, and the fraction of
inhibitory neurons is gi = 1 − ge. The neurons are connected
by directed edges (synapses) at random with the probability
c/N , where c is the mean number of synaptic connections. This
network has the structure of the Erdős-Rényi network with
the Poisson degree distribution. The neurons are bombarded
by a flow of random δ-like spikes that represent spontaneous
releases of neurotransmitters in synapses and random spikes
arriving from other areas of the brain (for example, the activity
of the hippocampal CA3 network that causes membrane
potential fluctuations in CA1 pyramidal cells like in the model
[29]). This flow has properties of shot noise if the spike
duration is sufficiently small. The intensity of this flow strongly
influences on network dynamics and plays the role of the
control parameter in the cortical model [30].

Neurons also receive spikes from active presynaptic exci-
tatory and inhibitory neurons. The total input I (t) at time t to
a neuron is the sum of three contributions: (i) random spikes
from shot noise, (ii) spikes from excitatory neurons, and (iii)
spikes from inhibitory neurons. The input Vj to a neuron with
index j , j = 1,2, . . . ,N , is the integral of Ij (t) over the time
interval [t − τ,t],

Vj (t) = nJn + kJe + lJi, (1)

where n, k, and l are the numbers of spikes arriving during
the time interval [t − τ,t] from shot noise, active presynaptic
excitatory and inhibitory neurons, respectively. Jn is the am-
plitude of the shot-noise spikes. Je and Ji are the efficacies of
synapses from excitatory and inhibitory neurons, respectively.

The dynamics of the stochastic neurons is determined by
the following rules. If during the integration time window τ
the total input Vj (t) to an inactive neuron becomes larger than
a threshold value #, then with the probability τµa the neuron
becomes active and fires a spike train with a constant frequency
ν (the index a = e if the neuron is excitatory and a = i if it
is inhibitory). If the total input Vj (t) of an active excitatory
(inhibitory) neuron becomes smaller than #, then the neuron
stops firing with the probability τµa . In this model, the rates
µe and µi are the reciprocal first-spike latencies of excitatory
and inhibitory neurons, respectively. If the ratio

α ≡ µi/µe (2)

is smaller than 1, then it means that excitatory neurons respond
faster to stimuli than inhibitory neurons.

B. Rate equations

The fractions ρe(t) and ρi(t) of active excitatory and
inhibitory neurons, respectively, at time t characterize the
neuronal activity in the cortical model. They are determined
by the following rate equations [30,33]:

ρ̇a

µa

= −ρa + 'a(ρe,ρi), (3)

where a = e,i and ρ̇ ≡ dρ/dt . The function 'a(ρe,ρi) is
the probability that, at time t , the total input to a randomly
chosen excitatory (a = e) or inhibitory (a = i) neuron is at
least the threshold #. The function 'a(ρe,ρi) is determined
by the network structure, the distribution function of shot noise
(we consider the Gaussian distribution for simplicity), and the
frequency-current relationships for single neurons (the step
function in our model). Note that the probability 'a(ρe,ρi) is
the same for both excitatory and inhibitory neurons because,
in the network under consideration, excitatory and inhibitory
neurons occupy topologically equivalent positions. Therefore,
'e(ρe,ρi) = 'i(ρe,ρi) ≡ '(ρe,ρi), where

'(ρe,ρi) =
∑

n,k,l!0

((nJn+Jek+Jil−#)G(n)

×Pk(geρec̃)Pl(giρi c̃). (4)

Here, c̃ = cντ , ((x) is the Heaviside step function, Pk(c) is
the Poisson distribution function,

Pk(c) = cke−c/k!, (5)

and G(n) is the Gaussian distribution function,

G(n) = G0e
−(n−⟨n⟩)2/2σ 2

. (6)

G(n) is the probability that a neuron receives n random spikes
from shot noise during the integration time τ . ⟨n⟩ is the mean
number of these spikes, σ 2 is the variance, and G0 is the
normalization constant,

∑∞
n=0 G(n) = 1. Note that Eqs. (3)

and (4) are asymptotically exact in the limit N → ∞ [30,33].
They are similar to the phenomenological Wilson-Cowan
equations [36,37] (see a discussion in [33]). The activities ρe

and ρi are comparable to electroencephalographic recordings
(EEG), or local field potentials (LFP), representing the activity
of thousands of neurons.

In numerical simulations, we use the algorithm proposed in
[30] and the following model parameters: N = 104, c = 103,
# = 30, τν = 1, µeτ = 0.1, α = 0.7, ge = 0.75, and gi =
0.25. Throughout this paper we use 1/µe ≡ 1 as time unit and
Je ≡ 1 as input unit. Following [38], we consider balanced
networks with Ji = −3Je. We also use Jn = Je and σ 2 = 10
for the amplitude and the variance of shot noise.

C. Excitable dynamics in the region with stochastic resonance

Now we discuss the excitable dynamics in the region with
SR (the region with single sharp oscillations in Fig. 1). At
a low noise intensity, ⟨n⟩ < nc1, the neuronal network is in
a state with a low neuronal activity and a weak response to
stimuli. Above nc1, in the region nc1 < ⟨n⟩ < nc2, the network
demonstrates a peculiar excitable dynamics (the critical points
nc1 and nc2 are defined in [30]). It still relaxes exponentially
to the rest state with low activity if a perturbation of neuronal
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FIG. 1. (Color online) Phase diagram of the cortical model in
dependence on the flow intensity ⟨n⟩ of random spikes bombarding
neurons in the case when excitatory neurons respond faster to input
than inhibitory neurons (α = 0.7) (adapted from [30]). Stochastic
resonance takes place in the region nc1 < ⟨n⟩ < nc2 preceding the
saddle-node bifurcation at ⟨n⟩ = nc2. Above nc2 sustained network
oscillations appear.

activity is sufficiently weak. However, if a perturbation caused
by a pulse is larger than an activation threshold, then a strongly
synchronized neuronal activity emerges in the form of a
single sharp oscillation. This single sharp oscillation has a
large amplitude, it is deterministic, and strongly nonlinear.
The activation threshold of this sharp oscillation depends on
the shot-noise intensity ⟨n⟩. For example, in the considered
network of 104 neurons (7500 excitatory and 2500 inhibitory
neurons), at ⟨n⟩ = 16, below nc2 = 18.8 but above nc1 = 7.6,
the simultaneous activation of only 75 excitatory neurons
chosen at random among 7500 excitatory neurons (i.e., about
1% of excitatory neurons), while the other neurons are inactive
at that moment, generates a single sharp oscillation formed by
the synchronized activity of about 9000 neurons (nature and
properties of these nonlinear oscillations are discussed in detail
in [30]). The activation threshold decreases when ⟨n⟩ → nc2
and finally it becomes zero in the bifurcation point. Due to the
small value of the activation threshold, a subthreshold signal
together with sensory noise can overcome the threshold and
generate a large-amplitude spike of neuronal activity. This kind
of excitable dynamics is similar to one discussed within single
neuron models [6,10,11,19,21].

III. STOCHASTIC RESONANCE IN
THE CORTICAL MODEL

In this section, using excitable dynamics described in
Sec. II C, we demonstrate SR in neuronal networks and
mimic SR observed in [9]. In our numerical calculations and
simulations, we assume that the first-spike latencies 1/µe and
1/µi of excitatory and inhibitory neurons equal 20 ms and
28.6 ms, respectively. Note that the first spike latency is ranged
from 25 to 49 ms for CA3 hippocampal pyramidal (excitatory)
neurons [39] and from 20 to 128 ms for inhibitory cerebellar
stellate cells [40]. For the parameters chosen in Sec. II B and
the noise intensity ⟨n⟩ = 25 corresponding to 12.5 random
spikes per second from a synaptic connection, the frequency of
sustained network oscillations is about 5.2 Hz. This frequency
lies in the range of θ waves [41].

A. SR in numerical integration

Let us study the response of the cortical model to a
weak periodic stimuli when the neuronal network is in the

regime with excitable dynamics described in Sec. II C. In
our numerical integration of Eq. (3), the neuronal network
is stimulated by a sensory stimulus x(t) that contains both
sensory noise ξ (t) and a periodic signal S(t),

x(t) = ξ (t) + S(t). (7)

We assume that the sensory stimulus is delivered by Ns =
gsNe = gsgeN sensory neurons, where gs is a model parame-
ter. These additional sensory neurons are connected at random
with the probability c/N only to excitatory neurons. Therefore,
each excitatory neuron receives in average an input from
gsgec sensory neurons. This method of stimulation assumes
that excitatory neurons receive the same signal+noise inputs
Eq. (7). It is similar to the experimental method in [9] where
all neurons were stimulated by the same electric field.

One can show that the introduction of the sensory neurons
leads to a simple modification of Eq. (3). Namely, in Eq. (3),
we must substitute the function '(ρe,ρi) by '(ρe + Ae(t),ρi),
where Ae(t) = x(t)gs/(ντ ). We also introduce an additional
stochastic force F (t) acting on neurons and representing other
sources of noise different from shot and sensory noise (for
example, the force can represent irregular fluctuations caused
by finite-size effects [30,42]). Equation (3) takes the form

ρ̇a

µa

= (1 − ρa)F (t) − ρa + '(ρe + Ae(t),ρi). (8)

We consider the sensory noise ξ (t) generated by the Gaussian
process with the mean number ⟨ξ (t)⟩ = 4 × 10−2 of random
spikes per the integration time τ and the variance σ 2

sn = 7.3 ×
10−4 (we only use the positive part of this Gaussian process
and the effective mean amplitude of noise, Aξ , is 4.3 × 10−2)
[see Fig. 2(c)]. The sensory signal is sinusoidal,

S(t) = As[sin(2πfst) + 1]/2, (9)

with the amplitude As = 4.5 × 10−3 and the frequency fs =
1.25 Hz. The ratio As/⟨ξ (t)⟩ is close to the value used in
[9]. The stochastic force F (t) representing finite-size effects
is a random variable uniformly distributed in the interval
[0,0.009].

Analyzing the dynamics of the cortical model by use of
Eq. (8), we find that, in the absence of a periodic signal,
the sensory noise produces occasionally sharp oscillations.
Adding a sinusoidal subthreshold sensory signal, which alone
cannot generate network oscillations [see Fig. 2(b)], we find
that sharp spikes appear preferentially near the maximums of
the signal [see Fig. 2(d)].

Following the analysis of Gluckman et al., we find the burst
probability density (BPD) defined as the probability to observe
a burst (a sharp spike in our case) of network activity when
the sinusoidal signal S(t) has a phase φ [the signal maximums
take place at φ = π (2n + 1)/2, where n = 0,1, . . . ]. Figure 3
displays the BPD of the neuronal network at different levels
of sensory noise. One can see that the BPD correlates with
the sensory signal [see Fig. 3(c)] around an optimal level of
sensory noise, while no correlations were observed at weaker
or stronger levels of sensory noise [see Figs. 3(b) and 3(d),
respectively]. These results agree with the results in [9].

The signal-to-noise ratio (SNR) is defined as follows:

SNR = a

b
, (10)
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FIG. 2. (Color online) In the absence of sensory noise, a periodic
sensory signal (S) with the amplitude As = 4.5 × 10−3 [see panel (a)]
generates a weak perturbation of the excitatory population activity ρe

that can hardly be identified in panel (b). However, the addition of
sensory noise ξ with the mean amplitude Aξ = 4.3 × 10−2 [see panel
(c)], which is about 10 times larger than the signal’s amplitude As ,
results in neuronal activity with single sharp oscillations shown in
panel (d). The single sharp oscillations appear preferentially near the
peaks of the sensory signal. Network parameters: c = 1000, # = 30,
gi = 0.25, Ji = −3Je, σ 2 = 10, ⟨n⟩ = 10, α = 0.7, gs = 0.1, and
fs = 1.25 Hz. Time t is in units 1/µe.

where a is the amplitude of the peak of the power spectral
density (PSD) of neuronal activity at the signal’s frequency fs

and b is the average value of the background PSD excluding
the peak. This method is the same as the one in [9]. The
only difference is that in [9] the SNR was defined as SNR =
(a − b)/b. We apply the periodic sinusoidal signal plus noise
to the network as discussed above and then analyze the PSD
of the neuronal activity. Results of numerical integration of
Eq. (8) and estimation of the SNR for different levels of mean
sensory noise are displayed in Fig. 4. The error bars represent
the statistics: for each level of noise, we repeat 10 times the
measurements of the response of the neuronal network. The
maximum of the SNR at a nonzero level of noise in Fig. 4 is a
fingerprint of stochastic resonance.

B. SR in simulations

In our simulations we considered another stimulation
method. The sensory noise and the sinusoidal signal [Eqs. (7)
and (9)] were delivered directly to a fraction gs of geN
excitatory neurons chosen at random. Sensory noise ξ was
represented by random spikes with the mean number ⟨ξ ⟩ of
spikes per the integration time τ and the variance σ 2

sn. The
amplitude As of the sinusoidal signal S(t) was fixed while the
level ⟨ξ ⟩ of sensory noise was gradually increased. Note that
there is a simple approximate relationship between ⟨ξ ⟩ and the
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FIG. 3. Burst probability density (BPD) versus the phase φ of the
sinusoidal sensory signal from the numerical integration of Eq. (8).
(a) The BPD versus φ in the presence of sensory noise with the mean
amplitude Aξ = 4.3 × 10−2 when the signal is very weak (As ≪ Aξ ).
(b) BPD versus φ at sensory noise Aξ = 2.4 × 10−2. (c) BPD at the
optimal level of sensory noise Aξ = 4.3 × 10−2. (d) BPD at strong
sensory noise, Aξ = 7.0 × 10−2. The signal’s amplitude As = 4.5 ×
10−3 is the same for (b), (c), and (d). The data were obtained by
averaging over 2500 periods of the signal. The dashed lines represent
the signal versus φ. Other parameters are the same as in Fig. 2.

noise amplitude Aξ used in Sec. III A, ⟨ξ ⟩ ∝ cAξ . We used the
amplitude of the sinusoidal signal As = 4.5 as in the numerical
integration. Other model parameters were the same as those in
Sec. III A, except ⟨ξ ⟩ and the variance (σ 2

sn = 5).
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FIG. 4. Signal-to-noise ratio (SNR) versus the mean amplitude
Aξ of the sensory noise in the cortical model from numerical
integration of Eq. (8). SNR is in decibel [10 log10(SNR)]. Error bars
were estimated from rms distribution of 10 measurements. The bar
length is equal to twice the standard deviation. The middle point of
the bar corresponds to the mean value of SNR. Parameters are the
same as those in Fig. 2.
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FIG. 5. Response of the cortical model of neuronal networks to
the sinusoidal sensory signal S(t) at different levels ⟨ξ⟩ of sensory
noise: (a) ⟨ξ⟩ = 5.0; (b) ⟨ξ⟩ = 5.5; (c) ⟨ξ⟩ = 6.0; (d) ⟨ξ⟩ = 7.0;
(e) sinusoidal signal S(t); (f) ⟨ξ⟩ = 7.5. Parameters: As = 4.5 and
σ 2

sn = 5. Other parameters in simulations are the same as in Fig. 2.

Results of our simulations for N = 104 are represented in
Figs. 5 and 6. At a small level ⟨ξ ⟩ of sensory noise (⟨ξ ⟩ " 5),
the response of the neuronal network to the sinusoidal sensory
signal is weak since the probability of generation of sharp
oscillations by the signal is small [see Fig. 5(a)]. When the
level ⟨ξ ⟩ of sensory noise is increased, sharp oscillations are
generated with a larger probability.

Note that the degree of correlation of the sharp oscillations
with the sensory signal also increases. At the optimum level
of sensory noise (⟨ξ ⟩ ≈ 7), the network response [Fig. 5(d)]
is well synchronized with the sensory signal [Fig. 5(e)]. This
synchronization is remarkable since only 10% of excitatory
neurons receive the signal+noise input and the level of sensory
noise is larger than the signal’s amplitude. With increasing ⟨ξ ⟩
above the optimum level, the correlation between the signal
and the network response becomes worse [see Fig. 5(f)].

In order to characterize the network response, we also
measured the power spectral density of activity fluctuations
and calculated the SNR from Eq. (10). Figures 6(a) and 6(b)
show the PSD of the neuronal activity displayed in Fig. 5(d).
One sees that the PSD has a strong peak at the frequency of the
sinusoidal signal S(t) (other peaks correspond to the respective
harmonics). The amplitude of this peak characterizes the
network response. With increasing the level ⟨ξ ⟩ of sensory
noise, the peak increases in comparison with the background
amplitude of the PSD, and consequently the SNR increases
[see Fig. 6(c)]. The SNR reaches a maximum at the optimal
noise and then decreases. Again, the inverted-U shape of the
SNR is a hallmark of stochastic resonance.

Comparing Figs. 4 and 6(c), one sees that the different
methods of stimulation of neurons by signal+noise inputs,
which were used in our numerical integration and simulations,
give a similar behavior of the SNR. A quantitative comparison
of the optimum noise levels in these two different methods
is not simple since in numerical calculations we stimulated
all excitatory neurons by a signal+noise input from a small
group of sensory neurons, while in simulations we delivered
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FIG. 6. (Color online) Power spectral density (PSD) of the corti-
cal model in which a small fraction (gs = 0.1) of excitatory neurons is
stimulated by a sinusoidal signal [Eq. (9)] with frequency fs = 1.25
Hz in the presence of sensory noise with ⟨ξ⟩ = 7.0. (a) PSD versus the
frequency f , linear scale; (b) PSD versus f , log-log scale. (c) Signal-
to-noise (SNR) ratio versus ⟨ξ⟩. SNR is in decibel [10 log10(SNR)].
Parameters in simulations are the same as in Figs. 2 and 5.

the signal+noise directly to a small fraction of excitatory
neurons. Another reason for this difference is due to strong
activity fluctuations caused by finite-size effects. This kind
of fluctuation plays a role of an additional noise that affects
collective phenomena in interacting systems [31]. We discuss
finite-size effects in Sec. IV B.

IV. SIGNAL DETECTION IN MODULAR
NEURONAL NETWORKS

In the brain, neurons of similar function are grouped
together in columns (or modules). This kind of organization
assumes that synaptic connections are arranged denser within
columns and sparser between columns. The columnar orga-
nization of the neocortex has been documented in studies of
sensory and motor areas in many species [43–45]. Cortical
columns are formed by the binding of many minicolumns
(their number varies between 50 and 80) by common input and
short-range horizontal connections [45]. Understanding the
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FIG. 7. (Color online) Signal detection in neuronal networks
with modular structure from numerical integration of Eq. (3). (a)
A signal together with noise is delivered to four modules 1, 2, 3,
and 4. Responses of these modules are averaged in a module denoted
as .. (b) S represents the signal “ola” sent to these four modules.
This signal with noise generates output signals 1, 2, 3, and 4 from
the respective modules. The signal . represents the average over the
output signals.

role of modular organization (community structure, clustered
networks) is an open problem in neuroscience [46,47].

In this section we show by use of numerical integration
and simulations that the signal recognition in the regime with
SR may be remarkably improved if a neuronal network has a
modular organization similar to the partition of columns into
minicolumns. We consider a neuronal network in which N
neurons are grouped in n modules of size N/n. These modules
are described by the cortical model in Sec. II and act in the
regime of SR. A modular system is shown schematically in
Fig. 7(a). All modules receive signal+noise inputs. Signals are
represented by trains of pulses instead of periodic signals. Then
the responses of the modules are summed up and averaged.

A. Detection of pulsed signals in numerical integration

The sinusoidal signal in Fig. 2(a) carries no informa-
tion. Let us consider a case when a sensory signal con-
tains information. We choose the message “ola” (“hello” in
Portuguese) expressed in Morse code as the digital code
1110111011100010111010100010111. In order to represent
this message as a sensory signal, we consider rectangular
pulses separated by a time interval equal to 235 ms (the period
of the sustained network oscillations of 5.2 Hz). The duration
of these pulses was chosen about 30 ms that is about eight times
smaller than the period of network oscillations. The number of
these pulses equals the number of bits in our message. Finally,
we remove pulses corresponding to zeros. As a result we obtain
a sensory signal representing our message “ola” (see Fig. 7).
Despite the pulse amplitude being chosen sufficiently small,
every pulse can generate with a certain probability a single
sharp oscillation in a module. Figure 7 shows that the response
of the modules to this message is stochastic even at the optimal

level of sensory noise. On one hand, the module does not detect
some pulses. On the other hand, it may elicit “false” responses.
For given network parameters, sensory noise level, and signal’s
amplitude, we measured the probability p that a pulse in the
signal is detected in a module, i.e., the pulse generates a single
sharp oscillation. For the parameters chosen in our model and
the signal’s amplitude As = 0.0135, numerical integration of
Eq. (3) gives p ≈ 5/7. Alternatively, one can say that two
pulses of seven may be missed or may be “false.” In our
numerical integration of Eq. (3) we assume that all modules
receive the same signal+noise input (note that apart from the
sensory noise there is also intrinsic synaptic noise in every
module). This method is similar to the stimulation of neuronal
networks by an electric field as in [9]. Then, responses of the
modules to the sensory signal are combined and we obtain an
averaged response as shown in Fig. 7. For every pulse in the
message “ola,” the probability that at least one of the modules
detects it is

/(n) = 1 −
n∏

m=1

(1 − pm), (11)

where pm is the probability that the module with index
m = 1, . . . ,n detects a pulse. If the modules have the same
probability pm = p, then /(n) increases with increasing the
number of modules n as /(n) ≈ np at p ≪ 1. In turn, the
probability of an error, 1 − /(n), decreases exponentially with
increasing n as 1 − /(n) = exp[−n| ln(1 − p)|]. If we want
to detect every pulse of the message with probability of, say,
99%, then the necessary number n of modules can be found
from the condition /(n) = 0.99 (see, for example, Ref. [48]).
For the obtained p ≈ 5/7, Eq. (11) gives n = 4. The response
to the message “ola” averaged over four neuronal modules is
shown in Fig. 7. This result illustrates that modular structures
improve remarkably the detection of weak signals.

B. Simulations of modular networks

In our simulations of modular networks, N = 50 400
neurons were grouped in n modules of size Nm = N/n, n =
1,2, . . . ,50. The modules are bound together by a common
input but there are no connections between modules. The
modules have the same structure as the random networks
described in Sec. II. We used a train of random pulses obtained
from a periodic pulse train by the removal of pulses with
probability 40%. The pulse duration was W = 0.2 s, the
amplitude As = 4.5, and the pulse rate f = 0.75 Hz. The
pulsed signal was delivered to the modules together with
sensory noise (normally distributed random spikes with the
mean number ⟨ξ ⟩ = 5.7 of spikes per integration time, and the
variance σ 2

s = 5). We used two stimulation methods. In both
methods, we chose at random a small fraction, gs = 10%, of
excitatory neurons in each module. In the first method, every
chosen neuron received independent sensory noise together
with the pulsed signal. In the second method, the pulsed signal
was delivered with the same noise to all chosen neurons.
While the first method takes into account the synaptic noise in
sensory systems, the second method mimics the stimulation of
neuronal networks by an electric field that acts simultaneously
on many neurons as in [9]. Analyzing dynamics of the network
during a large observation time (80 s), we found the probability
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FIG. 8. (Color online) (a) Probability p(n) that a signal’s pulse
is detected by a module of size N/n versus n (N = 50 400 in our
simulations). (b) Probability /(n) of the signal detection in a network
with n modules. In panels (a) and (b), symbols represent results of
two stimulation methods: (1) each neuron in every module receives
independent sensory noise but the same pulsed signal (triangles);
(2) neurons in the modules receive the same sensory noise and the
same pulsed signal (squares). Parameters of the signal+noise input
are in the text. Other parameters are the same as in Figs. 2 and 5.

pm that a signal’s pulse is detected by a module with index
m = 1, . . . ,n of size N/n (a pulse is detected if it evokes
a sharp large-amplitude network oscillation during a time
interval equal to twice the pulse duration after the signal’s
pulse begins). Averaging pm over 10 network realizations,
we found the average probability p(n) shown in Fig. 8(a)
for the two stimulation methods. Using the first stimulation
method (uncorrelated sensory noise), we observed that p(n)
first increases, meaning that the excitability of the modules
increases. After reaching a maximum, p(n) decreases. Using
the second stimulation method (correlated sensory noise),
we observed a monotonic decrease of p(n) with decreasing
the module size. Since, except the module size, all model
parameters were fixed in our simulations for uncorrelated and
correlated noise, we believe that the observed decrease of
p(n) at large n is mainly due to finite-size effects. Finite-size
fluctuations are expected to increase as n increases and disrupt
collective oscillations in the neuronal networks.

We also suggest that the peak of the function p(n) observed
at n = 10 in the case of uncorrelated noise may be caused by
a competition between the increase of module excitability and
suppression of collective oscillations as n increases. The large
values of p(n) observed in the case of correlated noise [see
Fig. 8(a)] may be due to the fact that the correlated noise results
in correlations between neuronal activities of modules. As one
can expect, these correlations increase p(n) in comparison to
the case of uncorrelated noise. However, it is unclear how these
correlations together with finite-size effects are responsible for
the observed monotonic decrease of p(n) as n increases in
the case of correlated noise, in contrast to the nonmonotonic
behavior of p(n) observed in the case of uncorrelated noise.

Figure 9 shows that, when the module size decreases,
sharp network oscillations evoked by signal’s pulses lose
their deterministic shape and strongly vary in amplitude.
Unfortunately, the mechanism of this effect is unknown. It
may be due to an increase of the clustering coefficient when
size Nm of the modules decreases. Neglecting the directness of
connections between neurons, we can estimate the clustering
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FIG. 9. (Color online) (a) Train of random rectangular pulses as
a sensory signal. Panels (b)–(e) show stimulated neuronal activity
of one of n modules of size Nm = N/n for N = 50 400: (b) n = 2
(Nm = 25 200); (c) n = 10 (Nm = 5040); (d) n = 30 (Nm = 1680);
(e) n = 40 (Nm = 1260). Neurons receive independent sensory noise
together with the signal. Other parameters are the same as in Fig. 8.

coefficient characterizing the occurrence of triangles in the
network structure. The clustering coefficient is c/Nm, where
c is the mean degree (size dependence of structural properties
of complex networks and the role of triangles in network
dynamics are discussed in the review in [32]). Appearance
of numerous triangles may destroy the balance between
excitation and inhibition. Note that standard statistical analysis
shows that the scale of stochastic activity fluctuations in
a network of size Nm is O(1/N

1/2
m ) (see, for example,

[42]).
Finally, we found the probability /(n), using Eq. (11)

and averaging over the observation time. As one can see
in Fig. 8(b), /(n) increases with increasing the number of
modules n for both stimulation methods. Interestingly, at large
n, even though p(n) decreases, /(n) remains large, meaning
that the large number of modules compensates the decrease of
p(n). Therefore, the fragmentation of the neuronal system into
several modules increases the reliability of signal detection.

Now we compare our model of interacting neurons with
the summing network [22] of noninteracting neurons. In the
summing network, neurons receive common input and act
in parallel. In our model, neurons are grouped in modules
receiving common input and working in parallel. If the same
fraction ga of neurons in both models is initially activated by a
signal, then in the summing network their outputs are summed
while in our model they activate other neighbors, forming
sharp spikes of neuronal activity in the modules. Every spike
involves about 90% of the neurons in a module independently
of ga if ga is at least about 0.01 (at ⟨n⟩ = 16). Thus the output
from the modules can be 0.9/ga ≈ 90 times larger than the one
in the summing network. Note that our model is best suited
for detecting low-frequency signals, whereas the summing
network recognizes high-frequency signals (since our model
uses network oscillations, whereas neurons in the summing
network can generate action potentials with higher frequency
than network oscillations).
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V. CONCLUSION

In this paper, we demonstrated stochastic resonance in
the response of neuronal networks to sinusoidal signals in
the presence of sensory noise and intrinsic synaptic noise.
We also showed that SR together with modular structure
can remarkably improve signal detection. Our simulations
of the cortical model with stochastic neurons and numerical
integration of rate equations revealed that sensory noise
can enhance response of neuronal networks to sinusoidal
and nonperiodic pulsed signals. We demonstrated this noise-
enhanced response in the case of neuronal networks that are in a
dynamical state near a saddle-node bifurcation corresponding
to the appearance of sustained network oscillations. In this
state, neuronal networks have a remarkable excitability. Even
a subthreshold sensory input delivered to a small fraction
of excitatory neurons can evoke a sharp large-amplitude
oscillation of neuronal activity synchronized with some degree
of correlation with the signal. These sharp oscillations are
nonlinear events that represent a strongly synchronized activity
of a large fraction of neurons (90% of neurons in our model)
and have a deterministic shape. We found that the signal-to-
noise ratio reaches a maximum at an optimum level of sensory
noise, manifesting stochastic resonance. The important feature
of our mechanism is that this mechanism is universal and does
not qualitatively depend on the underlying model. SR has a
collective nature due to interaction between neurons, rather
than just due to excitable dynamics of single neurons as in
models [6,10,11,19,21]. Therefore, breaking of cooperation
between neurons results in suppression of this mechanism.
Indeed, we observed suppression of signal detection by finite-
size effects. However, these effects play no role for single
neuron dynamics.

Using our model, we mimicked the experiments of Gluck-
man et al. [9], who observed SR in hippocampal slices
from mammalian brain. Results of our numerical analysis
qualitatively agree with the experiments. This evidences that
the phenomena observed in [9] may have collective nature. It

also supports the suggestion that SR may enhance effects of
weak hippocampal θ or more widespread γ oscillations within
the brain.

We suggest that the network response represented by a
strongly synchronized activity of a large fraction of neurons
can also play an important role in various mechanisms of signal
processing in the brain. The fact that the sharp oscillations
have a deterministic form and can be evoked by a small
group of neurons may be of crucial importance not only for
signal detection, but also for information transmission and
communication between different areas of the brain. This
mechanism enables a small group of neurons to control a large
neuronal network.

In order to show the role of modular organization in
signal detection, we considered networks in which neurons
are grouped in modules working in the regime of SR. Using
numerical integrations and simulations of the cortical model,
we demonstrated that even a few modules can strongly enhance
the reliability of signal detection in comparison with the case
when a modular organization is absent.

One can note the following important properties of our
model: (1) the amplification of subthreshold signals can be
regulated by a flow of spikes from other brain areas; (2) a
sensory signal can be delivered to a small fraction (we used
10%) of neurons without a loss in the output signal; (3) neurons
in our network use for their own benefit not only sensory noise
but also internal synaptic noise; (4) grouping of neurons into
modules improves signal detection.
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