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Critical phenomena and noise-induced phase transitions in neuronal networks
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We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated
by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal
networks on classical random networks, we find critical phenomena accompanying the transitions and their
dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical
point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism
of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition,
paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation,
while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by
a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We
show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity
with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are
similar to single paroxysmal spikes and sharp waves observed in electroencephalographic (EEG) measurements.
Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large
amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small
amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model
stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.
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I. INTRODUCTION

In the brain, interactions among neurons lead to diverse
collective phenomena such as, for example, self-organization,
phase transitions, brain rhythms, and avalanches [1–3]. Among
phase transitions, one can mention a nonequilibrium second-
order phase transition observed in human bimanual coordina-
tion [4–6]. Brain rhythms, epileptic seizures, and the ultraslow
oscillations of BOLD fMRI patterns may also emerge as a
result of nonequilibrium second-order phase transitions [7].
Living neural networks stimulated by an electric field undergo
a first-order phase transition that can be seen as a jump of
neuronal activity at a certain applied voltage [8]. Taking into
account the role played by the collective phenomena in brain
dynamics, it is very important to understand their nature and
mechanisms. It is well known that bifurcations are responsible
for the emergence of oscillations in nonlinear dynamic
models [9,10], for example, the Hodgkin-Huxley model of a
biological neuron [11,12]. In the context of brain rhythms,
the Hopf bifurcation was discussed in the framework of
mean-field cortical models [7], models of randomly connected
integrate-and-fire neurons [13–20], and networks of stochastic
spiking neurons [21,22]. However, when studying a phase
transition, it is not enough to identify the type of bifurcation.
It is also necessary to reveal and study critical phenomena
accompanying the transition [23]. In the brain, various patterns
of spontaneous activity representing collective phenomena
were observed, such as neuronal avalanches [2,24,25], parox-
ysmal activity [26,27], sharp waves in hippocampus [3,28,29],
spindle oscillations [30], and many others. Despite a significant
progress, understanding of collective phenomena in the brain
and bifurcation mechanisms of phase transitions is elusive.

A neuronal network undergoes a phase transition from
one to another state when a control parameter, such as an

applied voltage or a flow of spikes bombarding neurons,
reaches a critical value. In many cases (for example, for
epileptic seizures) [31], it is necessary to foresee that a
neuronal network approaches to the critical point. An analysis
of patterns and statistics of spontaneous neuronal activity and
critical phenomena near the critical point may be a useful
method for solving the problem. Nowadays, a comprehensive
analysis of the critical phenomena in neuronal networks is far
from being complete.

In statistical physics, exactly solved models largely help
us to understand phase transitions and critical phenomena
[32]. Unfortunately, even simple versions of neuronal networks
composed of integrate-and-fire neurons are very complex for
an analytical consideration [13–20]. In this paper, we study
analytically and numerically an exactly solvable cortical model
with stochastic excitatory and inhibitory neurons on complex
networks. In the framework of this model, we consider first-
and second-order phase transitions stimulated by shot noise
(a flow of random spikes bombarding neurons). We also
study critical phenomena accompanying the transitions and
patterns of spontaneous activity signaling the transitions.
First, we study a noise-induced first-order phase transition
from low to high neuronal activity. The transition occurs if
inhibitory neurons respond faster on stimuli than excitatory
neurons. We demonstrate that bursts and avalanches of
neuronal activity precede the transition. Second, we study
two noise-induced second-order phase transitions that occur if
inhibitory neurons respond slower on stimuli than excitatory
neurons. The transitions represent two scenarios of appearance
and disappearance of sustained network oscillations. We
show that, when increasing the shot noise intensity, at first,
sustained network oscillations appear due to a saddle-node
bifurcation and then, at a higher shot noise intensity, the
oscillations disappear due to a supercritical Hopf bifurcation.
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We study patterns of spontaneous neuronal activity near the
bifurcations. We show that sharp paroxysmal-like spikes of
activity precede the second-order phase transition caused
by the saddle-node bifurcation. Above the Hopf bifurcation,
spontaneous activity appears in a form of irregular spindles
formed by damped oscillations. We also study analytically
and numerically sustained network oscillations near the critical
points of the bifurcations. Furthermore, we analyze the power
spectral density (PSD) of spontaneous neuronal activity and
its dependence on the noise intensity. We show that the
PSD depends strongly on the bifurcation mechanism and
the closeness to the critical point. We compare our results
with experimental data and previous theoretical investigations.
Finally, we discuss an amazing similarity between excitability
of the considered cortical model stimulated by shot noise and
excitability of the Morris-Lecar neuron [33] stimulated by an
applied current.

II. MODEL

We study a cortical model composed of Ne excitatory
and Ni inhibitory neurons. Ne + Ni ≡ N is the network
size, ge(i) ≡ Ne(i)/N is the fraction of excitatory (inhibitory)
neurons. Neurons are randomly connected with probability
c/N by directed edges and form a random directed graph with
Poisson degree distribution and the mean in and out degree c.

The network is locally treelike and has the small-world
properties [34–36] similar to those found in brain networks
[37]. Our model also takes into account noise playing an
important role in the brain dynamics [38–41]. We assume
that neurons are bombarded by random spikes represented by
Dirac delta functions

I (t) =
∑

i

qδ(t − ti), (1)

where ti are arrival times of spikes and q is their amplitude.
This kind of random input is so-called shot noise. The
flow of random spikes bombarding neurons represents a
combined effect of synaptic noise (spontaneous release of
neurotransmitters), stimuli from other brain areas or sensory
stimuli. According to Schottky’s result, in the case of the
Poisson distribution of interspike intervals, the power spectral
density S(ω) is proportional to the mean frequency ωsn of
spikes S(ω) = 2q2ωsn. In this paper, we assume that the
probability to receive ξ random spikes during the integration
time τ is Gaussian

G(ξ ) = G0 exp[−(ξ − ⟨n⟩)2/2σ 2], (2)

where σ 2 is the variance, ⟨n⟩ = ωsnτ is the mean number
of spikes arriving during the time interval τ , and G0 is the
normalization constant

∑∞
ξ=0 G(ξ ) = 1. We use ⟨n⟩ as the

control parameter characterizing the shot noise intensity.
Neurons also receive deltalike spikes from active neighbors.

The spikes mediate interaction among neurons. We assume
that efficacies of synaptic connections with excitatory and
inhibitory neurons are uniform and equal to Je (Je > 0) and
Ji (Ji < 0), respectively. The total input I (t) includes spikes
from shot noise and excitatory and inhibitory presynaptic
neurons. We define the input Vn to a neuron with index n,
n = 1,2, . . . ,N , as the integral of I (t) over the time interval

[t − τ,t]. It gives

Vn(t) = ξq + kJe + lJi, (3)

where ξ , k, and l are the numbers of spikes arriving during the
time interval [t − τ,t] from shot noise and active presynaptic
excitatory and inhibitory neurons, respectively. The numbers k
and l are random and are determined by activity of presynaptic
neurons during the interval [t − τ,t]. The network structure is
encoded in the adjacency matrix.

In our model, neurons are tonic and the firing frequency
f (V ) versus input V is the Heaviside function

f (V ) = f &(V − Vth), (4)

where Vth is a threshold. The frequency f is the same
for both excitatory and inhibitory neurons. If f τ ≪ 1 and
spike emission times of neurons are uncorrelated, then during
the time interval [t − τ,t], each active presynaptic neuron
contributes to Vn(t) either one spike with probability τf or
none with probability 1 − τf .

We consider stochastic neurons such as those of
[21,22,42,43]. It means that the response of a neuron to an
input is a stochastic process. Such a stochastic behavior might
be caused by cellular noise and intensive bombardment by
random spikes.

Two rules determines dynamics of the cortical model:
(1) If the input Vn(t) to an inactive excitatory (inhibitory)

neuron n at time t is at least a certain threshold Vth, then this
neuron is activated with probability µeτ (µiτ ) and fires spikes.

(2) An active excitatory (inhibitory) neuron n is inactivated
with probability µeτ (µiτ ) if Vn(t) < Vth.

We introduce a dimensionless activation threshold ' ≡
Vth/Je. ' is of the order of 15–30 in living neuronal networks
[8,44,45] and about 30–400 in the brain. In our model, 1/µe

and 1/µi are of the order of the first-spike latencies of
excitatory and inhibitory neurons (from 6 to 100 ms in the
cortex [46–49]). We introduce a parameter

α ≡ µi/µe. (5)

If inhibitory neurons respond faster to stimuli than excitatory
neurons, i.e., the response time Ti = 1/µi of an inhibitory
neuron is smaller than the response time Te = 1/µe of an
excitatory neuron, then α = Te/Ti > 1. If excitatory neurons
respond faster, i.e., Te < Ti , then α < 1. In the cortex, α may
be both larger and smaller than 1 [46–49].

A. Rate equations

The behavior of the cortical model is described by the
fractions ρe(t) and ρi(t) of active excitatory and inhibitory
neurons, respectively, at time t . We will call them “activities.”
We assume that activities are changed slightly during the
integration time τ . Using the rules formulated above and the
methods developed in [42,43,50], in particular, the method
of generating functions [43], in the limit N → ∞, we find
explicit rate equations

ρ̇e(t) = Fe(t)[1−ρe(t)] − µeρe(t) + µe*e[ρe(t),ρi(t)],
(6)

ρ̇i(t) = Fi(t)[1−ρi(t)] − µiρi(t) + µi*i[ρe(t),ρi(t)],
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where ρ̇ ≡ dρ/dt . *e(i)(ρe,ρi) is the probability that, at given
activities ρe and ρi , input to a randomly chosen excitatory
(inhibitory) neuron is at least '. Fe and Fi represent fields
acting on excitatory and inhibitory neurons. Note that the
rate equations (6) are similar to the Wilson-Cowan equations
[51] and rate equations derived for a stochastic rate model in
[21,22]. In the case of the classical random graph, we find

*i(ρe,ρi) = *e(ρe,ρi) ≡ *(ρe,ρi)

=
∞∑

k,l,ξ=0

&(kJe + lJi + ξq − 'Je)

×G(ξ )Pk(geρec̃)Pl(giρi c̃), (7)

where c̃ ≡ cτf . G(ξ ), Pk(geρec̃), and Pl(giρi c̃) are the
probabilities that, during the time interval τ , a randomly
chosen neuron receives ξ random spikes from shot noise, k
spikes from excitatory neurons, and l spikes from inhibitory
neurons, respectively. Note that the Poisson function Pk(c) ≡
cke−c/k! is the probability that a randomly chosen neuron
has k presynaptic connections. In the following, we will
study analytically and numerically Eqs. (6) and compare with
simulations of the cortical model.

Our cortical model based on [42] is similar to the
stochastic model of spiking neurons proposed by Benayoun
et al. [21]. Both models consider networks of stochastic
neurons (“input-dependent stochastic switches” by [21]). The
difference between the models is in some details about how
to describe activation and deactivation processes and external
input. Benayoun et al. [21] assume that each neuron spikes with
a rate dependent on its total synaptic input, while the resulting
spiking activity decays at a constant rate independent on the
input. In our model, we use a similar activation rule, while
spiking activity decays with a certain rate only if the input
becomes smaller than a threshold. The rates for activation and
decay are different in [21], in contrast to our model where they
are the same. Benayoun et al. assume that external input to each
neuron is fixed in contrast to our model where external input
is represented by shot noise. It is not surprising that, despite
these differences, these models demonstrate similar dynamics.
The advantage of the models with stochastic neurons is that
they can be solved explicitly. Benayoun et al. [21] and Wallace
et al. [22] derived explicit rate equations for networks with all-
to-all connections while sparse randomly connected networks
(classical random networks) were studied numerically.

Methods of complex network theory [50] allowed us to
find explicit rate equations for neuronal networks on classical
random graphs [43] and scale-free networks [43] and apply
the model to study stochastic resonance [52] and the role of
synaptic plasticity [53].

B. Algorithm of simulations and parameters

In simulations, we built a directed network, linking neurons
with the probability c/N . We divided time into intervals
of width +t = τ . At each time step, for each neuron we
calculated input Eq. (3) given that each active presynaptic
neuron contributes a spike with probability τf . The number
of random spikes (shot noise) in this input was generated
by the Gaussian process G(ξ ). Then, we updated states of

FIG. 1. Points 1, 2, and 3 represent solutions of the steady state
equation ρ = *(ρ,ρ) for the cases ⟨n⟩ < nc1 (solid line), nc1 < ⟨n⟩ <

nc2 (dashed line), and ⟨n⟩ > nc2 (dotted line).

neurons, using the rules formulated above. In our paper, we
present numerical calculations for parameters N = 105, c =
103, ' = 30, τf = 0.1, f = µe, and gi = 0.25. We analyze
dynamics of the cortical model in dependence on only two
parameters: the parameter α and the shot noise intensity.
The latter parameter is the control parameter. Throughout this
paper, we use 1/µe ≡ 1 as time unit and Je ≡ 1 as input unit.
Following [13], we choose Ji = −3Je. We use q = Je and
σ 2 = 10 for the amplitude and variance of shot noise.

C. Steady states

The shot noise intensity ⟨n⟩ determines activities ρe and
ρi of excitatory and inhibitory populations at given model
parameters. At zero fields Fe = Fi = 0, from Eqs. (6) we
obtain ρe = ρi ≡ ρ in a steady state (dρa/dt = 0). ρ is a
solution of the steady state equation

ρ = *(ρ,ρ). (8)

A graphical solution of the equation is displayed in Fig. 1.
If the shot noise intensity ⟨n⟩ is either sufficiently small or
large, then there is only one solution, either point 1 or point
3. These fixed points correspond to steady states with low and
high neuronal activities, respectively. In an intermediate range
nc1 < ⟨n⟩ < nc2, there are three fixed points (1, 2, and 3). The
critical point ⟨n⟩ = nc1 is the point where fixed points 2 and
3 coalesce. Fixed points 1 and 2 coalesce at ⟨n⟩ = nc2. From
Fig. 1, one sees that the coalescence occurs when

d*(ρ,ρ)/dρ = 1. (9)

Together with the steady state equation (8), the condition (9)
determines the critical points nc1 and nc2.

While the fixed points depend on ⟨n⟩, but not on α, their
local stability with respect to small perturbations depends on
both ⟨n⟩ and α. It is determined by eigenvalues of the Jacobian
of Eqs. (6),

Ĵ (ρ) =
(

−1 + ∂*/∂ρe ∂*/∂ρi

α∂*/∂ρe −α + α∂*/∂ρi

)
, (10)

calculated at the fixed points. The eigenvalues are

λ± = 1
2 (J11 + J22) ± 1

2

√
(J11 − J22)2 + 4J12J21, (11)

where Jij are the entries of the Jacobian. If λ± < 0 at a fixed
point, then this point is stable (attractor). If λ± > 0, then the
point is unstable. If one of the eigenvalues λ± is positive and
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TABLE I. Local stability of the fixed points 1, 2, and 3 in the
regions Ia–IIIb on the phase diagram in Fig. 2, where s = stable,
sd = saddle, u = unstable, sp = spiral, lc = limit cycle.

Ia Ib Ic Id Ie IIa IIb IIIa IIIb

1 s s s s s
2 sd sd sd sd
3 s s sp u sp u s s sp u sp and lc u and lc

the other is negative, then the point is saddle. If Reλ± < 0
and Imλ± ̸= 0, the point is a stable spiral. If Reλ± > 0 and
Imλ± ̸= 0, the fixed point is an unstable spiral. The fixed points
and their stability determine a phase portrait of Eqs. (6).

If the neuronal network is weakly perturbed from an
equilibrium state corresponding to a stable fixed point ρ, then
the real and imaginary parts of λ+ at this point determine a
relaxation rate γr to the state

γr = −Reλ+(ρ), (12)

and the angular frequency γi of damped oscillations about the
fixed point

γi = Imλ+(ρ). (13)

D. Phase diagram

Analyzing the local stability of the fixed points 1, 2, and 3
in the α − ⟨n⟩ plane (see Table I), we find the phase diagram of
the cortical model displayed in Fig. 2. According to Table I, in
regions Ia–Ie, the network relaxes exponentially to the stable
fixed point 1 (of course, if a perturbation is small). In regions
Ib and IIa, relaxation to the stable fixed point 3 is exponential
while, in regions Ic and IIb, the relaxation occurs in the form
of damped oscillations about the fixed point 3. In regions IIIa
and IIIb, the fixed point 3 is an unstable point surrounded by
a limit cycle. These are the regions with sustained network

〈  〉

.

.

.

FIG. 2. (Color online) ⟨n⟩ − α plane of the phase diagram of the
cortical model. ⟨n⟩ is the shot noise intensity. α is the ratio of the
response time of excitatory neurons to the response time of inhibitory
neurons. The phase regions, the phase boundaries, and the parameters
used in numerical calculations are explained in the text. The black
dot represents the tricritical point T with the coordinate αt ≈ 0.80.
Lines 1 and 2 represent two scenarios discussed in the text.

oscillations about the point 3. Nonlinear equations (6) have
different phase portraits in phase regions Ia–IIIb in Fig. 2. The
phase portraits in the (ρe,ρi) phase can be found by use of
the standard methods [9,10]. They determine the patterns of
collective neuronal activity and response of the network on
stimuli.

In Fig. 2, the phase boundaries are represented by the dashed
and solid lines. The vertical lines ⟨n⟩ = nc1 and ⟨n⟩ = nc2 are
determined by the self-consistent solutions of Eqs. (8) and (9)
discussed in Sec. II C. The boundaries between regions IIa and
IIb and between regions IIIa and IIIb are determined by the
condition

γi(ρ(3)) = Imλ+(ρ(3)) = 0 (14)

(see the dashed lines in Fig. 2). The phase boundaries between
regions Ic and Id and between regions IIb and IIIa are
determined by the condition

γr (ρ(3)) = −Reλ+(ρ(3)) = 0 (15)

(see solid line in Fig. 2). According to Eq. (15), on the boundary
between regions IIb and IIIa, the relaxation rate is zero, i.e.,
critical slowing down occurs. The point T = (nc2,αt ) in Fig. 2
is a tricritical point of coexistence of three phases: the low
activity state (regions Ic and Id), the high activity state (region
IIb), and the state with sustained network oscillations (region
IIIa). At the point T , the line of the first-order phase transition
meets the lines of two continuous phase transitions. The point
S = (nc1,αs) is the common point of regions Ia, Ic, and Id.
For the parameters used in our paper, we find nc1 ≈ 7.6, nc2 ≈
18.8, αs ≈ 0.87, and αt ≈ 0.80.

We performed additional investigations of the cortical
model with a small imbalance when geJe + giJi ̸= 0 in the
range 0.23 < gi < 0.3 around the balanced state at gi = 0.25
(other model parameters were fixed). We found that the phase
diagram is qualitatively the same as in the balanced state in
Fig. 2. The critical point nc2 of the saddle-node bifurcation is
almost constant in this range. With increasing gi from 0.23
to 0.3, the region III with sustained network oscillations is
broadening and the critical value αt increases. At a given α, the
critical point of the Hopf bifurcation nc3 is also monotonously
increased as gi increases from 0.23.

III. FIRST-ORDER PHASE TRANSITION

In this section, we study critical phenomena accompanying
the first-order phase transition stimulated by shot noise. In
particular, we study neuronal bursts and avalanches as precur-
sors of the transition. Although bursts and avalanches have
been broadly studied both experimentally and theoretically,
understanding of their mechanism in the brain is elusive
[2,20,24,25,54]. Here, apart from the standard measurements
of the distribution function of avalanches over size, we also
study critical behavior of the relaxation rate, a dependence of
the power spectral density (PSD) of activity fluctuations on the
shot noise intensity, and discuss finite-size effects. We find a
dramatic increase of the zero-frequency peak of the PSD when
the shot noise intensity tends to a critical point, while above
the point the relaxation rate is nonzero and there are no critical
fluctuations.
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FIG. 3. (Color online) (a) Avalanche size distribution P (s) ver-
sus size s at ⟨n⟩ = 18.8 found by use of simulations (N = 104).
The dashed line corresponds to − 3

2 power law. Smin is explained in
[57]. Inset: temporal activity of excitatory neurons near the first-order
phase transition. Time t is in units of 1/µe. (b) Hysteresis in neuronal
activity for increasing and decreasing noise level ⟨n⟩. In simulations,
α = 0.85.

The first-order phase transition occurs if α > αt , i.e., when
the response time Ti of an inhibitory neuron to stimulus is
small enough in comparison with the response time Te of an
excitatory neuron. In simulations and numerical solution of
Eqs. (6), we increased the noise level ⟨n⟩ from zero (region
Ia) to a value in region IIa (or IIb) above the critical point nc2
and afterwards decreased it again to a value below nc2 (see
line 1 in Fig. 2). When increasing the noise intensity ⟨n⟩, the
neuronal activity undergoes a jump at ⟨n⟩ = nc2 [nc2 ≈ 18.8
in Fig. 3(b)]. Therefore, the critical point nc2 is the limiting
point of the first-order phase transition. This phase transition
is caused by a saddle-node bifurcation that corresponds to
coalescence of the stable point 1 and the saddle point 2.
Simultaneously, at ⟨n⟩ = nc2, the eigenvalue λ+(ρ(1)) becomes
zero while λ−(ρ(1)) remains to be negative. The first-order
phase transition was also found in [21]. The line of the
first-order phase transition ends up at the point (αt ,nc2) on the
phase diagram. If α < αt , the neuronal networks undergoes
a second-order phase transition at ⟨n⟩ = nc2 that will be
discussed in Sec. IV.

A. Avalanches

In simulations, at ⟨n⟩ ! nc2, we observe bursts of neuronal
activity [see Fig. 3(a)]. When ⟨n⟩ → nc2 the mean interburst
interval decreases while the mean burst duration increases. The
bursts are caused by avalanches (activation of a single neuron
triggers activation of a cluster of neurons). These activation
processes are stochastic. In our model, in networks of finite
size, bursts are generated by finite-size fluctuations. We studied
avalanches, analyzing spike time series by use of the standard
method (see [24] or the recent work [55]). The avalanche
size distribution P (s) is represented in Fig. 3(a). Using the
maximum likelihood estimate [56], we found that, when ⟨n⟩ is
close to nc2, the tail of P (s) follows a power law P (s) ∝ s−z,
with the exponent z ≈ 1.50 and the corresponding p value is
p = 0.88 (the closeness of p to 1 shows that the fit is good
[57]). Our estimation is close to the value 1.62 obtained in
[21]. Avalanches with the exponent z about 1.5 were also
found near a saddle-node bifurcation in networks of leaky
integrate-and-fire neurons with short-term synaptic depression
[20]. Our estimation also agrees with experimental data [24,55]

and the standard mean-field exponent z = 3
2 obtained for other

exactly solved models [42,58–62].

B. Hysteresis

At a given α > αt , if ⟨n⟩ decreases from a value above nc2 to
a value below nc2, the network activity remains as high as it was
above nc2 [see Fig. 3(b)]. The activity falls to a low value only
at a critical intensity ⟨n⟩ = nc1(α), where nc1 ! nc1(α) ! nc2.
In the general case, nc1(α) depends on α (see Fig. 2). If α > αs ,
where αs is the α coordinate of the point S on Fig. 2, hysteresis
occurs in the range nc1 < ⟨n⟩ < nc2. If αt < α < αs , hysteresis
occurs in a smaller range of shot noise intensity nc1(α) <
⟨n⟩ < nc2 where nc1(α) is the ⟨n⟩ coordinate of the interception
point of the line 1 with the phase boundary between regions
Ic and Id ending up at points S and T on the phase diagram
in Fig. 2. The width of the hysteresis region, i.e, nc2 − nc1(α),
tends to zero when α → αt . At α < αt , hysteresis is absent
because, in regions Id and Ie, the fixed point 3 is unstable and
there is only one stable fixed point 1. One notes that critical
slowing down occurs at both limiting points of the first-order
phase transition, i.e., at ⟨n⟩ = nc2 in the low activity state and
at ⟨n⟩ = nc1 [or nc1(α)] in the high activity state. Hysteresis
was observed, for example, in living neural networks [63] and
in simulations of thalamocortical systems [64].

C. Critical slowing down of neuronal dynamics

For deeper understanding of the first-order phase transition,
we now find analytically the relaxation rate to the low activity
state. Writing Eq. (9) in the form ∂*/∂ρe + ∂*/∂ρi = 1 and
substituting it into Eq. (11), we find that at ⟨n⟩ = nc2 the
eigenvalue λ+(ρ(1)) is zero at the fixed point 1. Therefore, the
relaxation rate [Eq. (12)] to the low activity state is also zero:

γr = −λ+(ρ(1)) = 0. (16)

This phenomenon is so-called critical slowing down. Note that
it takes place on the line ⟨n⟩ = nc2 at all α, both above and
below αt (see Fig. 2).

We now find dependence of the relaxation rate γr on ⟨n⟩ at
0 < nc2 − ⟨n⟩ ≪ nc2. We use the Taylor expansion of λ+ over
small δρ ≡ ρ(1)(nc2) − ρ ≪ ρ(1)(nc2) in Eq. (11) and obtain

λ+(ρ) = λ+[ρ(1)(nc2)] + dλ+(ρ)
dρ

δρ + . . . . (17)

The first term is zero. Using Eq. (A2) for δρ from Appendix
A, in the leading order, we obtain

γr = −λ+(ρ) ∝ (nc2 − ⟨n⟩)1/2. (18)

This behavior occurs both at α > αt and α < αt .
If a neuronal network has a finite but large size N ≫ 1, then

according to the scaling law hypothesis, near a critical point
nc of a continuous phase transition, the relaxation rate γr is
described by the general scaling law

γr (⟨n⟩,N ) = (⟨n⟩ − nc)σX[(⟨n⟩ − nc)N1/ν] (19)

with a scaling function X(x) and exponents σ and ν which
can be found by use of renormalization group techniques
[23,65,66]. One assumes that the scaling law also is valid
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near the limiting point nc2 of the first-order phase transition
[59]:

γr (⟨n⟩,N ) ∝ (⟨n⟩/nc−1)σ , if N−1/ν ≪ ⟨n⟩/nc−1 ≪ 1

∝ N−σ/ν, if ⟨n⟩/nc − 1 ≪ N−1/ν (20)

where σ = 1
2 . Thus, at a finite but large size N ≫ 1, the

relaxation rate γr is nonzero at any ⟨n⟩ due to finite-size effects
that smear the critical singularity. This agrees with results of
our simulations presented in the following section.

D. Power spectral density of fluctuations near the first-order
phase transition

We now find the power spectral density (PSD) of activity
fluctuations in the low activity state when ⟨n⟩ is close to
nc2. In simulations, we measured the PSD of excitatory and
inhibitory activities. We also solved analytically Eqs. (6) with
weak white-noise forces Fe(t) and Fi(t), where Fe(t),Fi(t) ∝
1/

√
N . The forces mimic forces caused by finite-size effects

(this method was also used in [14]). Our calculations are
represented in Appendix B. We find that, in the low activity
state, the PSD defined as

S(ω) ≡ ⟨δρe(ω)δρe(−ω)⟩, (21)

where δρe(t) ≡ ρe(t) − ρ(1), has a sharp zero frequency peak
described by the following shape function [see Eq. (B8)]:

S(ω)
Smax

≈ 1
(ω/γr )2 + 1

. (22)

The peak maximum is Smax ∝ 1/γ 2
r . Figure 4(a) displays the

PSD S(ω) measured in our simulations in the low activity
state in region Ic. In Fig. 4(b), we compare simulations with
the theoretical prediction. One sees that Eq. (22) describes well
the measured frequency dependence of the PSD. According to
Eq. (18), at ⟨n⟩ → nc2, the peak maximum increases as

Smax ∝ 1/(nc2 − ⟨n⟩). (23)

Our simulations support the predicted increase of the zero-
frequency peak Smax [see the inset in Fig. 4(b)]. When ⟨n⟩ is
close to nc2, finite-size effects [Eq. (20)] become important and
γr remains nonzero, although very small, even at the critical
point. As a result, Smax has a maximum at ⟨n⟩ = nc2 instead
of divergency. The numerical results also confirm the linear
decrease of 1/Smax, 1/Smax ∝ nc2 − ⟨n⟩, predicted by Eq. (23)
when ⟨n⟩ → nc2. In contrast, Smax has no maximum at nc2
when ⟨n⟩ tends to nc2 from the high activity state (it is the
manifestation of hysteresis).

The Lorentzian behavior of the PSD of synaptic currents
has been observed in cat cortex during wakefulness [67]. In
Ref. [67], it was suggested that this behavior may be driven
by a white-noise process. During slow-wave sleep, the PSD
deviates from the Lorentzian [67]. This deviation suggests
that, in a general case, stochastic forces may be statistically
different from white noise.

Thus, the cortical model shows that bursts and avalanches
appear near the limiting point of metastable states of the first-
order phase transition caused by a saddle-node bifurcation in
agreement with other network models [20,21,58,59]. Critical
phenomena (power-law statistics for avalanches and sharp
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FIG. 4. (Color online) (a) Power spectral density S(ω) of activity
fluctuations versus frequency ω in the low activity state of the cortical
model (results of simulations at the shot noise intensity ⟨n⟩ = 18.7,
α = 0.85). (b) Averaged frequency dependence of S(ω) at small
frequencies. Results of simulations are shown by open diamonds.
The solid line represents Eq. (22) with γr = 6.9(2) and ω0 = 0.03.
Frequencies are in units of µe. Inset: the zero-frequency peak
Smax = S(ω = 0) versus ⟨n⟩ when increasing ⟨n⟩. The observation
time was 10 000/µe.

zero-frequency peak of the PSD) due to critical slowing down
in the low activity state (when approaching the critical point
from below), the absence of the critical phenomena above
the point (because, in the high activity state, the relaxation
rate is nonzero at the critical point) and hysteresis are the
characteristic properties of the first-order phase transition,
which can be experimentally tested.

Another mechanism of avalanches based on ideas of self-
organized criticality by Per Bak [68] is discussed in [2].
From our point of view, at the present time, there is no
direct experimental evidence that supports one approach over
the other. Further experimental and theoretical investigations
of these two approaches are necessary for understanding
avalanches in the brain.

IV. SECOND-ORDER NONEQUILIBRIUM
PHASE TRANSITIONS

We now consider the case α < αt , i.e., when excitatory
neurons respond faster on stimuli compared to inhibitory neu-
rons. We show that, when increasing the shot noise intensity,
the cortical model undergoes successively two second-order
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FIG. 5. Network oscillations near (a) the saddle-node (⟨n⟩ =
18.805, nc2 = 18.8) and (b) supercritical Hopf (⟨n⟩ = 34, nc3 = 36)
bifurcations. (c) Amplitude (solid line) and frequency (dashed line)
of network oscillations versus ⟨n⟩. At ⟨n⟩ > nc3, the oscillations are
damped. These results are obtained from numerical integration of
Eqs. (6). Time t is in units of 1/µe, and α = 0.75.

phase transitions. We find that sustained network oscillations
emerge at a saddle-node bifurcation and disappear at a Hopf
bifurcation. We study properties of the phase transitions,
critical phenomena, patterns of spontaneous activity, and
sustained network oscillations near the critical intensities of
shot noise.

A. Saddle-node bifurcation

At a given α < αt , we increase shot noise intensity ⟨n⟩
from ⟨n⟩ = 0 (see line 2 in Fig. 2). The neuronal network goes
from region Ia with the single fixed point 1 into region Id or
Ie where its dynamics is determined by three fixed points: the
stable point 1, the saddle point 2, and the unstable point 3 (see
Table I). At ⟨n⟩ = nc2, the points 1 and 2 coalesce and the
network undergoes a second-order phase transition due to a
saddle-node bifurcation from a state with a low activity and
short-range temporal correlations between neurons into a state
with regular sustained network oscillations (regions IIIa or
IIIb). In regions IIIa and IIIb, dynamics of neuronal networks
is determined by the unstable fixed point 3 surrounded by
a limit cycle. At ⟨n⟩ > nc2, the network oscillations emerge
with a large amplitude [see Fig. 5(a)] and their frequency
increases from zero as ω ∝ (⟨n⟩ − nc2)1/2 [see Fig. 5(c)].
This frequency dependence is a very general feature of
oscillations in nonlinear dynamic systems close to the saddle-
node bifurcation [9,11,12]. Note, however, that in our model,
we deal with a phase transition, i.e., a collective phenomenon in
neuronal networks. We suggest that for this kind of continuous
phase transition the frequency is the order parameter.

In simulations, at ⟨n⟩ below nc2, we observed irregular al-
most identical sharp spikes of neuronal activity [see Fig. 6(a)].
The mean frequency of the spikes is very small and increases
when the shot noise intensity tends to the critical point nc2
while the spike duration is almost constant and much larger
than the period (1/f ) of oscillations generated by a single
neuron. This kind of activity differs sharply from bursts found
near the first-order phase transition (compare Figs. 3 and 6).
The sharp spikes emerge from a low background activity with
a rapid onset [Fig. 6(b)]. They reach a large amplitude, involve
in synchronized activity about 90% of neurons, and end up
with an abrupt return to lower activity. In Fig. 6, the spike
duration is about 90 ms and the mean interspike interval is
about 34 s at 1/µe = 20 ms.
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FIG. 6. (Color online) (a) Series of sharp spikes of neuronal
activity near the saddle-node bifurcation. (b) Paroxysmal-like spike of
activity. Solid and dashed lines represent spikes found in simulations
and numerical integration of Eqs. (6), respectively. Parameters: shot
noise intensity ⟨n⟩ = 18.76 and α = 0.55. Time t is in units of 1/µe.

In order to understand the mechanism of generation of
the sharp spikes, we performed numerical integration of
Eqs. (6) with nonzero stochastic forces Fe and Fi representing
finite-size effects at the same parameters as in simulations.
The numerical integration also reveals sharp spikes that are
identical to those observed in simulations [Fig. 6(b)]. Our
analysis of the phase portrait of Eqs. (6) in regions Id and
Ie shows that the sharp spikes are strongly nonlinear events
in neuronal activity generated by fluctuations. In the (ρi ,ρe)
phase plane, their trajectories are topologically equivalent to
the heteroclinic orbits found in the Morris-Lecar model (see
Fig. 7.4 in Ref. [11]).

Analyzing properties of the sharp spikes, such as emergence
conditions, course of the events, their shape, amplitude,
duration, and low frequency oscillations, we find that this
kind of spontaneous neuronal activity is similar to such
epileptiform activity as the paroxysmal spikes observed in
EEG activity [26,27]. Based on this similarity we suggest that
the paroxysmal spikes and other seizurelike events, such as
slow-wave oscillations [27] or sharp waves in hippocampus
[3,28], are possible strongly nonlinear waves appearing in
neuronal networks near a saddle-node bifurcation. Of course,
in order to describe in detail the events, a realistic network
structure and realistic single-neuron dynamics must be taken
into account.

At ⟨n⟩ below nc2, the relaxation rate γr is γr ∝ (nc2 −
⟨n⟩)1/2 [Eq. (18)]. This result is in contrast to the standard
mean-field theory (the Landau theory) that predicts γr ∝
|nc2 − ⟨n⟩| for a second-order phase transition. The non-
standard scaling behavior and emergence of paroxysmal-like
spikes near the saddle-node bifurcation show an unusual char-
acter of the phase transition. Our simulations and numerical
integration also reveal an almost constant nonzero time lag +tl
between excitatory and inhibitory activities at ⟨n⟩ around nc2.
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For the spike in Fig. 6, inhibitory activity reaches a maximum
11 ms after excitatory activity.

In the context of stochastic resonance, several nonlinear dy-
namical systems [69–71] and single-neuron models [71–73],
which have excitable dynamics of the same kind as the Morris-
Lecar model and our cortical model, have been considered.
Phase transitions triggered by a saddle-node bifurcation into
a state with sustained large-amplitude oscillations were also
found in complex physical and chemical systems such as the
system of limit-cycle oscillators with all-to-all coupling [74]
and CO oxidation on the Pt(110) surface [75]. However, critical
phenomena and single nonlinear oscillations preceding the
transition were not studied. As far as we know, paroxysmal-like
spikes as collective nonlinear objects were not studied within
a neuronal network model. A detailed investigation of the
nature and mechanism of generation of the paroxysmal-like
spikes will be published elsewhere.

B. Supercritical Hopf bifurcation

We now study the second-order phase transition due to the
supercritical Hopf bifurcation. For this purpose, we perform
simulations of the cortical model, numerical integration, and
analytical analysis of Eqs. (6). We find critical behavior and
demonstrate a difference in critical properties between the
saddle-node and supercritical Hopf bifurcations.

When increasing the shot noise intensity ⟨n⟩ above nc2,
the frequency of sustained oscillations increases while their
amplitude decreases [see Fig. 5(c)]. The oscillations disappear
at a critical noise intensity ⟨n⟩ = nc3 which depends on α (see
the line 2 in Fig. 2). At ⟨n⟩ = nc3, the network undergoes
a phase transition from a state with the unstable point 3
surrounded by a limit cycle (region IIIa) into a state in which
the fixed point 3 is a stable spiral (region IIb). From the stability
analysis in Sec. II C, it follows that this transition is due to
the supercritical Hopf bifurcation. Above nc3, the network
enters region IIb with damped network oscillations about the
fixed point 3. Note also that network oscillations taking place
near the saddle-node and supercritical Hopf bifurcations have
different patterns [compare Figs. 5(a) and 5(b)]. Oscillations
emerging due to a Hopf bifurcation were also found in a
stochastic rate model [22].

1. Neuronal activity below the Hopf bifurcation

First, we study sustained network oscillations at ⟨n⟩ below
nc3. We expand *(ρe,ρi) in Eqs. (6) in a series in δρa(t) ≡
ρa(t) − ρ(3) around the fixed point 3 and hold terms up to
O(δρ3

a ) inclusively. Then, we solve Eqs. (6) in region IIIa,
using the averaging theory [9]. Details of our calculations are
in Appendix C. When ⟨n⟩ → nc3, we find a decrease of the
oscillation amplitude A,

A ∝ (nc3 − ⟨n⟩)1/2, (24)

and a decrease of the relaxation rate γ ∗
r ,

γ ∗
r ∝ nc3 − ⟨n⟩. (25)

Note that relaxation rate γ ∗
r characterizes relaxation of per-

turbed neuronal activity to sustained network oscillations, for
example, relaxation of network oscillations with a perturbed
amplitude to oscillations with a steady amplitude [this process

is shown in Fig. 5(b)]. γ ∗
r can be found from a solution of

nonlinear dynamical equations (see Appendix D). γ ∗
r differs

from the parameter γr calculated at the fixed point 3. At
⟨n⟩ < nc3, γr (ρ(3)) is negative and determines runaway of the
neuronal activity from the unstable fixed point 3 [this process is
represented by the initial increase of the oscillation amplitude
in Fig. 5(b)]. γr (ρ(3)) is positive and plays the role of relaxation
rate only at ⟨n⟩ > nc3.

In Appendix D, it is shown that, at ⟨n⟩ < nc3, a phase lag +ϕ
between synchronized activities of excitatory and inhibitory
populations is

+ϕ ∝ nc3 − ⟨n⟩. (26)

+ϕ determines the time lag +tl = +ϕ/γi between maximums
of excitatory and inhibitory activities. At ⟨n⟩ = nc3, +ϕ and
+tl are zero which means a strict synchronization between
excitatory and inhibitory activities. This is in contrast to an
always finite time lag in the case of the saddle-node bifurcation.

Thus, Eqs. (24)–(26) show that, when the noise intensity
⟨n⟩ tends to the critical point nc3 of the supercritical Hopf
bifurcation, the phase transition is signaled by a decrease of
the oscillation amplitude A, the relaxation rate γ ∗

r , and the
time lag +tl . At ⟨n⟩ = nc3, γ ∗

r is zero which manifests the
critical slowing down. The amplitude A is the order parameter
for the phase transition. These phenomena are general features
of the supercritical Hopf bifurcation. Comparing Eq. (25) with
(18) and the behavior of the time lag +tl at ⟨n⟩ = nc2 and
⟨n⟩ = nc3, we conclude that the continuous phase transitions
corresponding to the saddle-node and supercritical Hopf
bifurcations have different critical behaviors and, therefore,
belong to different classes of universality.

2. Neuronal activity above the Hopf bifurcation

We now analyze analytically the critical behavior of the
cortical model at ⟨n⟩ above nc3. Our simulations show
that, above nc3, spontaneous activity has a form of spindle
oscillations (see the inset in Fig. 7). The spindle oscillations
are similar to spindles observed, for example, in thalamus [30].
Damped oscillations were observed in an instance of epilepsy
(see, for example, [76]). If ⟨n⟩ tends to nc3 from above, then the
amplitude of spindle oscillations increases while the relaxation
rate γr tends to zero as γr ∝ ⟨n⟩ − nc3 according to Eq. (C8)
in Appendix C. This results in an increase of the peak of the
power spectral density of activity fluctuations at the frequency
of damped oscillations (see Fig. 7). Moreover, the phase lag +ϕ
between synchronized activities of excitatory and inhibitory
populations also tends to zero as +ϕ ∝ ⟨n⟩ − nc3 according
to Eq. (D4). These critical phenomena signal an approach to
the Hopf bifurcation. In order to understand the phenomena,
we use simulations and analytical calculations. According to
Appendix B 2, the PSD, S(ω), has a resonance peak

S(ω)/Smax ≈ 4ζ 2/[(1 − x2)2 + 4ζ 2x2], (27)

where x = ω/ω0 and ω0 ≡
√

γ 2
r + γ 2

i . The parameter ζ ,

ζ ≡ γr/ω0, (28)

is the damping ratio of damped oscillations. The peak maxi-
mum is max S(ω) ≡ Smax ∝ 1/ζ 2. This behavior of Smax is due
to the fact that the amplitude of damped oscillations increases
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FIG. 7. (Color online) The peak maximum Smax of the power
spectral density (PSD) of fluctuations versus ⟨n⟩ above the su-
percritical Hopf bifurcation (in simulations, ⟨n⟩ > nc3 ≈ 80.5 and
α = 0.55). Inset: temporal neuronal activity in the form of spindles
and the PSD S(ω) versus the frequency ω at ⟨n⟩ = 82.5. Time t is in
units of 1/µe.

as A ∝ 1/ζ ∝ 1/(⟨n⟩ − nc3) when ⟨n⟩ → nc3 [see Eq. (B12)].
In turn, the amplitude decreases when ⟨n⟩ increases and the
network goes away from the supercritical Hopf bifurcation.
Note that the relaxation rate γr determines the time decay of
the damped oscillations and can be found from data analysis of
a time dependence of the autocorrelation function [Eqs. (B2)
and (B12)]. From this analysis, one finds the dimensionless
parameter ζ that is an important characteristic of the closeness
of the network to the critical point nc3. The smaller is ζ the
closer is the network to the critical point. In the infinite-size
limit, ζ is zero at ⟨n⟩ = nc3. A similar resonance peak of the
PSD was also found within the integrate-and-fire model in
[15–17].

In Fig. 8, we represent the PSD of activity fluctuations
measured in simulations. In agreement with the theoretical
prediction, the measured PSD, S(ω), reveals a sharp maximum
at the frequency of damped oscillations. Figure 7 shows
that, when ⟨n⟩ → nc3, the maximum value Smax first strongly
increases and then saturates at a certain value due to the
finite-size effects [Eq. (20)]. Figure 8 shows that the shape
of this maximum is well described by the shape function (27).

The critical behavior of the cortical model near the super-
critical Hopf bifurcation helps to understand the attenuation
of alpha rhythms by visual or auditory stimuli (the Berger
effect) [77,78]. Recall that the Berger effect manifests itself in
activation of alpha waves on the electroencephalogram when
the eyes are closed and diminution of alpha waves when they
are opened (see, for example, the review of [77]). Based on the
cortical model, we suggest that opening eyes may result in an
increase of the flow of spikes bombarding neurons in the area of
the cortex that is responsible for the alpha waves. As a result,
the neuronal network goes away from the Hopf bifurcation
and the amplitude of damped oscillations decreases. A similar
phenomenon was also observed in the auditory cortex where
the tau rhythm (the tau rhythm belongs to the family of alpha
rhythms) was transiently suppressed by auditory stimuli [78].
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FIG. 8. (Color online) (a) Power spectral density (PSD) S(ω)
of activity fluctuations above the supercritical Hopf bifurcation for
α = 0.55 (from simulations). (b) Averaged frequency dependence of
S(ω) around the peak at ω0 = 0.15: the PSD at ⟨n⟩ = 85 (blue open
rectangles); the analytical calculation from Eq. (27) with γr = 0.12(1)
(blue dashed line); the PSD at ⟨n⟩ = 82.5 (pink open circles); the
analytical calculation from Eq. (27) with γr = 0.069(4) (pink solid
line). Frequencies are in units of µe.

C. Similarity between the cortical model and the
Morris-Lecar model

Above, we discussed local stability of fixed points and
bifurcations of nonlinear equations (6) in the cortical model
in dependence on the shot noise intensity and the parameter
α. Based on these results, one builds phase portraits of
Eqs. (6). In the case α < αt , we revealed that the phase
portraits in regions Id, Ie, IIIa, and IIIb are topologically
equivalent (in other words, homeomorphic) to the phase
portraits found in the Morris-Lecar model stimulated by an
applied current in the case when the I -V relation is N shaped
[11]. Recall that the Morris-Lecar model is a simplified version
of the four-dimensional Hodgkin-Huxley model. Within the
Morris-Lecar model, a system of two nonlinear equations
describes a relationship between the membrane potential and
the activation of K+ ion channels within the membrane. It is
well known that the topological equivalence of phase portraits
of two dynamical systems results in similar dynamics and
similar responses on stimuli [10]. Therefore, the dynamic
behavior of the cortical model stimulated by shot noise (a
flow of random spikes bombarding neurons) must be similar
in some respects to the dynamic behavior of the Morris-Lecar
model stimulated by an applied current. In this case, we
can apply results obtained for the well-studied Morris-Lecar
model to the cortical model. Izhikevich [12] showed that the
Morris-Lecar neuron acts as an “integrator,” when it is close

012701-9



LEE, LOPES, MENDES, AND GOLTSEV PHYSICAL REVIEW E 89, 012701 (2014)

to the saddle-node bifurcation, and as a “resonator,” when
it is close to the Hopf bifurcation. Based on the topological
equivalence, we can conclude that the cortical model acts in
a similar way near the bifurcations. Indeed, in Sec. IV A, we
showed that if the mean frequency of incoming random spikes
is a little bit larger than the critical frequency corresponding
to the saddle-node bifurcation, then a neuronal network
oscillates with an arbitrary low frequency. The higher the mean
frequency of incoming random spikes, the higher the frequency
of sustained network oscillations. Thus, we can say that the
network acts as an integrator. In contrast, when the network is
in the rest state near the supercritical Hopf bifurcation, it acts
as a resonator because it responds preferentially to a certain
(resonant) frequency of input (see Sec. IV B). Furthermore, in
Sec. IV A, the topological equivalence helped us to understand
the nature of paroxysmal-like spikes observed near the saddle-
node bifurcation because similar nonlinear spikes were found
in the Morris-Lecar model [11].

V. CONCLUSION

In conclusion, within an exactly solvable cortical model of
neuronal networks with stochastic excitatory and inhibitory
neurons, we studied first- and second-order phase transitions
stimulated by shot noise (a flow of random spikes bombarding
neurons). We performed simulations, numerical integration,
and analytical analysis of nonlinear dynamical equations.
These methods gave results in complete agreement with
each other. The advantage of our model is that it gives a
possibility to study both noise-induced first- and second-order
phase transitions in neuronal networks by use of a unified
approach and standard physical and mathematical methods.
This unified approach allowed us to compare qualitatively
and quantitatively critical phenomena accompanying the phase
transitions, patterns of spontaneous neuronal activity, and
their dependence on the shot noise intensity. Furthermore,
the rate equations derived for the model allowed us to
study strongly nonlinear events, such as paroxysmal-like
spikes and slow waves observed in neuronal activity, that
can not be described by a linear theory. Our results support
the idea that collective behavior of neuronal networks may
have universal properties that do not depend on details of
single-neuron dynamics. The universal collective phenomena
are determined by general properties of neuronal networks,
such as the network structure, balance between excitatory
and inhibitory neurons, the presence of noise, and interaction
between neurons.

We showed that if inhibitory neurons respond faster to
stimuli than excitatory neurons, then a first-order phase
transition manifests itself as a jump from low to high neuronal
activity at a critical noise intensity. We found the mechanism
of the transition and showed that it occurs due to a saddle-node
bifurcation. We studied in detail critical phenomena that
accompany the transition and patterns of spontaneous activity
near the critical point. In particular, we showed that bursts and
avalanches are precursors of the first-order phase transition.
When the shot noise intensity tends to the limiting point of
the metastable states, then the size distribution of neuronal
avalanches becomes a power law with the exponent about 1.5.
Moreover, at the critical point, critical slowing down occurs in

the infinite network, i.e., the relaxation rate is zero at the critical
noise intensity. Our simulations revealed that finite-size effects
smear the phase transition and make the relaxation rate to be
nonzero at the critical point. Critical phenomena (power-law
statistics for avalanches and sharp zero-frequency peak of the
PSD) due to critical slowing down in the low activity state
(when approaching the critical point from below), the absence
of the critical phenomena above the point (because, in the high
activity state, the relaxation rate is nonzero at the critical point),
and hysteresis are the characteristic properties of the first-order
phase transition, which can be experimentally tested.

We also studied two noise-induced second-order phase
transitions that occur if inhibitory neurons respond slower to
stimuli than excitatory neurons. These transitions represent
two scenarios of appearance and disappearance of network
oscillations. When increasing the shot noise intensity, at first,
sustained network oscillations appear due to a saddle-node
bifurcation, and then, at a higher shot noise intensity, the
oscillations disappear due to a supercritical Hopf bifurcation.
Our analysis showed that the continuous phase transitions
caused by the saddle-node and supercritical Hopf bifurcations
are accompanied by different critical phenomena and different
patterns of spontaneous neuronal activity. The transitions are
characterized by different order parameters and belong to
different classes of universality.

We analyzed patterns of spontaneous neuronal activity
near the saddle-node and Hopf bifurcations. Our most in-
teresting result is the observation of paroxysmal-like spikes
that precede the second-order phase transition caused by
the saddle-node bifurcation. We found that the spikes are
strongly nonlinear objects that appear instantly from a low
background activity with a rapid onset, reach a large amplitude,
involve in synchronized activity about 90% of neurons, and
end up with an abrupt return to lower activity. These spikes
are similar to single paroxysmal spikes and sharp waves
observed in EEG measurements. With increasing the shot
noise intensity above the critical point of the saddle-node
bifurcation, low frequency network oscillations follow the
irregular spikes. They appear with a large amplitude but a
small frequency (at the critical point, the frequency is zero).
The pattern of the oscillations resembles sharp-slow waves
[27] or sharp waves in hippocampus [3,28,29]. In contrast to
the saddle-node bifurcation, spontaneous activity above the
Hopf bifurcation is represented by irregular spindles formed
by damped oscillations. Sustained network oscillations below
the supercritical Hopf bifurcation have a small amplitude (at
the critical point, the amplitude is zero in the infinite-size limit)
and a finite frequency. These oscillations are also nonlinear and
have properties such as those of the Van der Pol oscillator.

We also analyzed the power spectral density (PSD) of
spontaneous neuronal activity near the critical points of the
phase transitions. We showed that the frequency dependence
of the PSD and its dependence on the shot noise intensity
give a rich information about the kind of bifurcation and the
closeness of the network to the critical point. In particular,
the PSD has a zero-frequency peak near the first-order phase
transition, while above the supercritical Hopf bifurcation the
PSD has a peak at the frequency of damped oscillations. The
peaks are strongly enhanced when the noise intensity tends to
the critical points of the phase transitions. These results may be
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applied to an analysis of spectral properties of EEG recording
in order to predict an approach to a critical point in neuronal
activity.

Finally, we discussed an amazing similarity between ex-
citability of the considered cortical model stimulated by shot
noise and excitability of the Morris-Lecar neuron stimulated
by an applied current [11,12,33]. This similarity results from
the fact that the cortical model of neuronal networks and
the Morris-Lecar model have topologically equivalent phase
portraits. This similarity allowed us to conclude that a neuronal
network acts as “integrator” when it is close to the saddle-node
bifurcation, and as a “resonator” when it is close to the
supercritical Hopf bifurcation. We believe this similarity may
be useful for understanding many nonlinear phenomena in
dynamics of neuronal networks.

In our model, a flow of random spikes bombarding neurons
represents a combined effect of synaptic noise (spontaneous
release of neurotransmitters), stimuli from other brain areas,
and sensory stimuli. At given model parameters, the flow
controls dynamics of the neuronal network. If the flow intensity
is close to a critical value, then even a small change in the flow
intensity can switch the network from one to another state. In
other words, a small change of activity of neuronal networks to
which a considered network is connected may strongly impact
on a dynamic state of the network under consideration. This
represents one of the important mechanisms of interaction
between neuronal networks [79].
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APPENDIX A: NEURONAL ACTIVITY NEAR THE
CRITICAL POINTS

Let us find the activity ρ(1) in the low activity state near
the critical point ⟨n⟩ = nc2 of the saddle-node bifurcation,
i.e., at 0 < nc2 − ⟨n⟩ ≪ nc2. In simulations, ρ(1) can be found
by measuring neuronal activity ρe(t) and averaging it over
a sufficiently large observation time. In Eq. (8), we use the
Taylor expansion of the function *(ρ,ρ) over ε ≡ ⟨n⟩ − nc2
and δρ ≡ ρ − ρ(1)(nc2) up to the second order in δρ. Then,
Eq. (8) takes a form

δρ = ∂*

∂⟨n⟩
ε + d*

dρ
δρ + 1

2
d2*

dρ2
(δρ)2 + . . . , (A1)

where the function * and its derivatives are calculated at ⟨n⟩ =
nc2. Using Eqs. (8) and (9), we find a solution

δρ = ρ(1) − ρ(1)(nc2) ≈ −K(nc2 − ⟨n⟩)1/2, (A2)

where

K =
∣∣∣∣2

∂*

∂⟨n⟩

/
d2*

dρ2

∣∣∣∣
1/2

. (A3)

The singular behavior (A2) is a general attribute of hybrid and
first-order phase transitions [60–62]. Note that ρ(⟨n⟩) near the
fixed point 2 is

ρ(2)(⟨n⟩) − ρ(1)(nc2) ≈ K(nc2 − ⟨n⟩)1/2 (A4)

because, at ⟨n⟩ = nc2, the points 1 and 2 coalesce and
ρ(1)(nc2) = ρ(2)(nc2).

Neuronal activity ρ = ρ(3)(⟨n⟩) near the Hopf bifurcation
can be found at 0 < ⟨n⟩ − nc3 ≪ nc3 by use of the Taylor
expansion (A1) with ε ≡ ⟨n⟩ − nc3 and δρ ≡ ρ − ρ(3)(nc3),
where the function * and its derivatives are calculated at ⟨n⟩ =
nc3. In this case, the linear terms give the leading contribution
to a solution

ρ(3)(⟨n⟩) − ρ(3)(nc3) ≈ ∂*

∂⟨n⟩
⟨n⟩ − nc3

(1 − d*/dρ)
, (A5)

in contrast to the square root dependence in Eq. (A2).

APPENDIX B: POWER SPECTRAL DENSITY
OF ACTIVITY FLUCTUATIONS

The power spectral density (PSD) of fluctuations of
neuronal activity encodes rich information about critical
phenomena. According to the Wiener-Khintchine theorem,
the power spectral density S(ω) of activity fluctuations of
the excitatory population is the Fourier transform of the
autocorrelation function Cee(t):

S(ω) = 1
2π

∫ ∞

−∞
e−iωtCee(t)dt. (B1)

The autocorrelation function

Cab(t) ≡ 1
T

∫ T

0
δρa(t1)δρb(t1 + t)dt1, (B2)

where δρa(t) = ρa(t) − ρa describes fluctuations of activity
ρa(t) of population a, a = e,i, around the averaged value ρa .
Cab(t) is a measure of correlations between values of δρa(t1)
and δρb(t1 + t) at two different instants separated by a lag t
and averaged over an arbitrary large time window T (see, for
example, in [80]).

In order to calculate the PSD, we assume that activity
fluctuations are driven by weak white-noise forces Fa(t) that
mimic forces caused by finite-size effects

⟨Fa(t)Fb(t ′)⟩ = F 2
0 δa,bδ(t − t ′), (B3)

where F0 ∝ 1/
√

N . In this case, one can use the linear re-
sponse theory and find δρa(t) = ρa(t) − ρ from the linearized
Eq. (6):

d
−→
δρ

dt
= (1 − ρ)

−→
F + Ĵ

−→
δρ , (B4)

where ρ is a steady state solution of Eq. (8),
−→
δρ = (δρe,δρi),

and
−→
F = [Fe(t),Fi(t)]. The Jacobian Ĵ is given by Eq. (10).
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Making the Fourier transformation

δρ̃a(ω) = 1
2π

∫ ∞

−∞
e−iωtδρa(t)dω, (B5)

we find the linear response

δρ̃e(ω) = (1 − ρ)[(iω − J22)F̃e(ω) + J12F̃i(ω)]
(iω + λ+)(iω + λ−)

,

(B6)

δρ̃i(ω) = (1 − ρ)[J21F̃e(ω) + (iω − J11)F̃i(ω)]
(iω + λ+)(iω + λ−)

.

Substituting this result into Eq. (B2), we find the PSD for
excitatory neurons

S(ω) =
F 2

0 (1 − ρ)2

2π

(
J 2

12 + J 2
22 + ω2

)

(λ2
+ + ω2)(λ2

− + ω2)
. (B7)

The PSD of inhibitory neurons is obtained from this equation
after replacements: J12 → J21 and J22 → J11.

1. PSD near the first-order phase transition

At first, let us consider the power spectral density (PSD) of
activity fluctuations in the low activity state (the fixed point
1) in regions Ib and Ic in Fig. 2. In these regions, eigenvalues
λ+ and λ− are real. When the noise intensity ⟨n⟩ tends to
the critical point nc2 of the first-order phase transition, the
eigenvalue λ+ tends to zero according to Eq. (18) while the
eigenvalue λ− remains finite. Therefore, at small ω, Eq. (B7)
takes a form

S(ω) ≈
F 2

0 (1 − ρ)2(J 2
12 + J 2

22)
2πλ2

−γ 2
r

1
(ω/γr )2 + 1

. (B8)

2. PSD near the Hopf bifurcation

Now, we consider the PSD of activity fluctuations in the
high activity state (the fixed point 3) at ⟨n⟩ > nc3 (region IIb
in Fig. 2). In this region, the eigenvalues λ± are complex. Their
real and imaginary parts determine the relaxation rate γr and
the frequency γi of damped oscillations, respectively [see Eqs.
(12) and (13)]. In this case, Eq. (B7) can be written in a form

S(ω) = F 2
0 (1 − ρ)2

2πω4
0

(
J 2

12 + J 2
22 + ω2

0x
2
)

[(x2 − 1)2 + 4ζ 2x2]
, (B9)

where x ≡ ω/ω0, ω0 ≡ [γ 2
i + γ 2

r ]1/2, and ζ ≡ γr/ω0. ζ is the
damping ratio of the damped oscillations.

In the case when the shot noise intensity ⟨n⟩ tends from
above to the critical point nc3, the relaxation rate γr tends to
zero [see Eq. (25)]. If ζ ≪ 1, then the PSD has a sharp peak at
the resonance frequency ω = ωr ≡ ω0(1 − 2ζ 2)1/2. The peak
maximum is

Smax ≡ S(ωr ) =
F 2

0 (1 − ρ)2

2πω4
0

[J 2
12 + J 2

22 + ω2
0(1 − 2ζ 2)]

4ζ 2(1 − ζ 2)
.

(B10)
Near the resonance frequency |ω − ωr | ≪ ω0, S(ω) is de-
scribed by a shape function F (x,ζ ):

S(ω)
Smax

≈ F (x,ζ ) ≡ 4ζ 2(1 − ζ 2)
(1 − x2)2 + 4ζ 2x2

. (B11)

Substituting Eq. (B6) into (B2), we find that the autocorre-
lation function Cee(t) has a form

Cee(t) = Aee
−γr t cos(γi t + ϕe). (B12)

The amplitude Ae and the phase ϕe behave as Ae ∝ 1/γr and
ϕe ∝ γr/γi at γr ≪ γi . For inhibitory neurons, we obtain a
similar behavior with Ai and the phase ϕi . There is a phase lag
between maximums of excitatory and inhibitory activities,

+ϕ = ϕe − ϕi ∝ γr/γi , (B13)

which is related with the time lag +tl = +ϕ/γi .

APPENDIX C: OSCILLATIONS NEAR THE
SUPERCRITICAL HOPF BIFURCATION:

NONLINEAR ANALYSIS

In this Appendix, we study analytically oscillations and
relaxation dynamics near the Hopf bifurcation in a shot noise
intensity range 0 < |nc3 − ⟨n⟩| ≪ nc3 (a range around the
boundary between regions IIIa and IIb in Fig. 2). In this range,
the oscillations have a small amplitude that allows us to use
the Taylor expansion over δρa(t) = ρa(t) − ρ(3) in Eqs. (6).
Assuming Fe = Fi = 0 and taking into account terms up to
the third order in δρa(t), we obtain two coupled nonlinear
equations

dδρa(t)
µadt

= −δρa(t) + D(1,0)δρe(t) + D(0,1)δρi(t)

+ 1
2

[
D(2,0)δρe(t)2 + 2D(1,1)δρe(t)δρi(t)

+D(0,2)δρ2
i (t)

]

+ 1
6

[
D(3,0)δρ3

e (t) + 3D(2,1)δρ2
e (t)δρi(t)

+ 3D(1,2)δρe(t)δρ2
i (t) + D(0,3)δρ3

i (t)
]
, (C1)

where a = e,i and

D(n,m) ≡ ∂n+m*

∂ρn
e ∂ρm

i

. (C2)

In Fig. 9(a), we compare results of numerical integration of
the reduced equations (C1) with the exact equations (6). In
the numerical integration, we studied relaxation of the system
to a state with sustained oscillations [see Fig. 9(a)] from an
initial point ρe = ρi = ρ(3). One sees that the frequency of the
oscillations described by the reduced equations (C1) is very
close to the frequency of oscillations from exact equations
(6) though the amplitude of the sustained oscillations from
Eqs. (C1) is a little bit larger. These results evidence that
the reduced equations (C1) are a good approximation to the
exact equations (6). A similar analysis based on a reduced
equation was used in [14,15] to study analytically oscillations
near the Hopf bifurcation in networks of integrate-and-fire
neurons. Following, we use the reduced equations to study
a critical behavior of the amplitude of sustained oscillations,
a relaxation rate to the state with the oscillations, and the
phase lag between activities of excitatory and inhibitory
populations.

It is convenient to rewrite Eqs. (C1) in a vector form

δ ˙⃗ρ = Ĵ δρ⃗ + M̂(δρe,δρi)δρ⃗, (C3)
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FIG. 9. (a) Relaxation of activity of excitatory neurons from an
initial state (the fixed point 3) to a state with sustained network
oscillations at ⟨n⟩ < nc3: (solid line) numerical integration of the
approximate equations (C1); (dashed line) exact equations (6). (b)
The parameter γr [Eq. (12)] versus ⟨n⟩ from a numerical solution of
Eq. (8) at fixed point 3 (solid line). The relaxation rate γ ∗

r is obtained
from numerical integration of equations (6) (triangles). Parameters:
⟨n⟩ = 35, α = 0.75.

where

δρ⃗ =
(

δρe

δρi

)
.

Ĵ is the Jacobian [Eq. (10)] and M̂(δρe,δρi) is a matrix which
introduces nonlinear terms

M11 = 1
2
D(2,0)δρe + 1

6
D(3,0)δρ2

e ,

M12 = 1
2
D(0,2)δρi + 1

6
D(0,3)δρ2

i + D(1,1)δρe

+ 1
2
D(2,1)δρ2

e + 1
2
D(1,2)δρeδρi ,

M22 = α

2
D(0,2)δρi + α

6
D(0,3)δρ2

i ,

M21 = α

2
D(2,0)δρe + α

6
D(3,0)δρ2

e + αD(1,1)δρi

+ α

2
D(1,2)δρ2

i + α

2
D(2,1)δρeδρi . (C4)

The Jacobian Ĵ [Eq. (10)] can be represented in a form

Ĵ = −γr Î + (a⃗ ˆ⃗σ ), (C5)

where Î is the identity matrix. The parameter γr is de-
termined by Eqs. (12) and (11) at the fixed point 3, i.e.,
ρe = ρi = ρ(3). In regions IIb and IIIa, Eq. (11) gives
γr = (J11 + J22)/2. Furthermore, a⃗ is a complex vector
a⃗=(a1,a2,a3)= 1

2 (J12+J21,iJ12−iJ21,J11−J22) with the prop-
erty a⃗2 = −γ 2

i . We also use notations ˆ⃗σ = (σ̂1,σ̂2,σ̂3) where
σ̂1,σ̂2, and σ̂3 are the Pauli matrices. Taking into account only
linear terms in δρa , the solution of Eq. (C3) can be written in
a form

δρ⃗ = e−γr t+a⃗ ˆ⃗σ t A⃗ = e−γr t

[
cos(γi t) + sin(γi t)

γi

a⃗ ˆ⃗σ
]
A⃗, (C6)

where the vector A⃗ = (Ae,Ai) is determined by an initial
condition ρ⃗(t = 0) = ρ⃗0.

Dependence of the parameter γr on ⟨n⟩ near the critical
point nc3 can be found by use of the Taylor expansion of
Reλ+(ρ(3)) in Eq. (12) over δρ = ρ(3) − ρ(3)(nc3):

γr (ρ(3)) = −Reλ+[ρ(3)(nc3)] − d Reλ+

dρ
δρ + . . . . (C7)

Taking into account the critical slowing down, Eq. (15), and
Eq. (A5) we obtain

γr ≈ 4(⟨n⟩ − nc3), (C8)

where the coefficient 4 is positive according to our numerical
estimations. At ⟨n⟩ > nc3, γr is positive and neuronal activity
weakly perturbed from the stable fixed point 3 [ρe = ρi =
ρ(3)] relaxes exponentially to the steady state with the
relaxation rate γr [see Eq. (C6)]. At ⟨n⟩ < nc3, γr is negative
and describes the process of runaway from the fixed point 3
[see Figs. 5(b) and 9(b)]. In order to find a correct solution of
Eq. (C3) and the relaxation rate in the state with sustained
network oscillations, we must take into account nonlinear
terms. We look for a solution in the following form:

δρ⃗ = ea⃗σ̂ t A⃗(t). (C9)

Then, Eq. (C3) takes a form

˙⃗
A = −γr A⃗ + e−a⃗σ̂ t M̂(δρe,δρi)ea⃗σ̂ t A⃗. (C10)

In the leading order in ε = nc3 − ⟨n⟩, in the limit t → ∞,
the oscillation amplitude A⃗(t) tends to a stationary value that
can be found by use of the averaging theory [9]. We integrate
Eq. (C10) over the period T = 2π/γi of oscillations,

0 =
∫ T

0
{−γr A⃗ + e−a⃗σ̂ t M̂[δρe(t),δρi(t)]ea⃗σ̂ t A⃗}dt, (C11)

and obtain two coupled equations for Ae and Ai :

0 = −γrAe + a
(e)
1 A3

e + a
(e)
2 A2

eAi + a
(e)
3 AeA

2
i + a

(e)
4 A3

i ,
(C12)

0 = −γrAi + a
(i)
1 A3

i + a
(i)
2 A2

i Ae + a
(i)
3 AiA

2
e + a

(i)
4 A3

e,

where a(a)
n are coefficients. A simple analysis of these

equations shows that, at |γr | ≪ 1, a solution for the complex
amplitudes Ae and Ai has a form

A⃗ =
√

|γr |B⃗ ∝
√

nc3 − ⟨n⟩B⃗, (C13)

where B⃗ = (eiϕe be,e
iϕi bi) is a complex vector and +ϕ ≡

ϕe − ϕi is a phase lag between excitatory and inhibitory
activities. The square root dependence in Eq. (C13) agrees
with the numerical solution of Eqs. (6) for the supercritical
Hopf bifurcation [see Fig. 5(c)]. This dependence is a general
property of the supercritical Hopf bifurcation.

APPENDIX D: RELAXATION RATE AND PHASE LAG

Equation (C10) also allows us to find the relaxation rate of
perturbed neuronal activity in the region IIIa with sustained
network oscillations. We denote the relaxation rate as γ ∗

r in
order to distinguish it from the parameter γr . We look for a
solution of Eq. (C10) in a form

A⃗(t) = A⃗ + e−γ ∗
r tδA⃗, (D1)
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where δA⃗ is a small perturbation and γ ∗
r ≪ γi is assumed. A

linear perturbation analysis with respect to δA⃗ gives

γ ∗
r ≈ G(nc3 − ⟨n⟩), (D2)

where G is a positive coefficient. γ ∗
r tends to zero when

⟨n⟩ → nc3. Results of our numerical calculations displayed
in Fig. 9(b) agree with this result. In numerical integration of
Eqs. (6), we chose the fixed point 3 as an initial condition,
i.e., ρe = ρi = ρ(3) at the initial time t = 0. Since the point
3 is unstable, at first the amplitude of network oscillations
exponentially increases in time with the rate −γr [see

Fig. 9(a)]. At large t , the amplitude tends exponentially (with
the relaxation rate γ ∗

r ) to a steady value.
Solving Eq. (C12), we find the phases ϕe and ϕi . The lag

+ϕ = ϕe − ϕi is proportional to |γr | ∝ nc3 − ⟨n⟩, i.e.,

+ϕ ≈ ψ∗(nc3 − ⟨n⟩), (D3)

where ψ∗ is a positive coefficient. At ⟨n⟩ " nc3, i.e., in the state
with damped oscillations, the phase lag +ϕ is determined by
Eqs. (B13) and (C8) that give

+ϕ ≈ ψ(⟨n⟩ − nc3), (D4)

where the coefficient ψ differs from ψ∗. Thus, the phase lag
+ϕ is zero at the critical point and increases with increasing
distance |⟨n⟩ − nc3| from the critical point.
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(1986).
[7] D. Steyn-Ross and M. Steyn-Ross, Modeling Phase Transitions

in the Brain. Springer Series in Computational Neuroscience,
Vol. 4 (Springer, New York, 2010).

[8] I. Breskin, J. Soriano, E. Moses, and T. Tlusty, Phys. Rev. Lett.
97, 188102 (2006).

[9] S. H. Strogatz, Nonlinear Dynamics And Chaos: With Applica-
tions To Physics, Biology, Chemistry, And Engineering (Perseus
Books Group, New York, 1994).

[10] Yuri A. Kuznetsov, Elements of Applied Bifurcation Theory
(Springer, New York, 1998).

[11] J. Rinzel and G. B. Ermentrout, in Methods in Neuronal
Modeling, edited by C. Koch and I. Segev (The MIT Press,
Cambridge, 1989), p. 251.

[12] E. M. Izhikevich, Int. J. Bif. and Chaos 10, 1171 (2000).
[13] D. J. Amit and N. Brunel, Cereb. Cortex 7, 237 (1997).
[14] N. Brunel and V. Hakim, Neural Comput. 11, 1621 (1999).
[15] N. Brunel, J. Comput. Neurosci. 8, 183 (2000).
[16] S. Ostojic, N. Brunel, and V. Hakim, J. Comput. Neurosci. 26,

369 (2009).
[17] E. Ledoux and N. Brunel, Front. Comput. Neurosci. 5, 25

(2011).
[18] B. Lindner, B. Doiron, and A. Longtin, Phys. Rev. E 72, 061919

(2005).
[19] N. Brunel and V. Hakim, Chaos 18, 015113 (2008).
[20] D. Millman, S. Mihalas, A. Kirkwood, and E. Niebur, Nat. Phys.

6, 801 (2010).
[21] M. Benayoun, J. D. Cowan, W. van Drongelen, and E. Wallace,

PLoS Comput. Biol. 6, e1000846 (2010).
[22] E. Wallace, M. Benayoun, W. van Drongelen, and J. D. Cowan,

PLoS ONE 6, e14804 (2011).

[23] H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena (Oxford University Press, London, 1987).

[24] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).
[25] D. Plenz and T. C. Thiagarajan, Trends Neurosci. 30, 101 (2007).
[26] M. Steriade and D. Contreras, J. Neurosci. 15, 623 (1995).
[27] I. Timofeev and M. Steriade, Neurosci. 123, 299 (2004).
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